Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

exfoliation Related Publications

3 Graphene Oxide Fiber with Different Exfoliation Time and Activated Carbon Particle

Authors: Nuray Uçar, Aysen Onen, Mervin Ölmez, Özge Alptoğa, Nilgün K. Yavuz

Abstract:

In recent years, research on continuous graphene oxide fibers has been intensified. Therefore, many factors of production stages are being studied. In this study, the effect of exfoliation time and presence of activated carbon particle (ACP) on graphene oxide fiber’s properties has been analyzed. It has been seen that cross-sectional appearance of sample with ACP is harsh and porous because of ACP. The addition of ACP did not change the electrical conductivity. However, ACP results in an enormous decrease of mechanical properties. Longer exfoliation time results to higher crystallinity degree, C/O ratio and less d space between layers. The breaking strength and electrical conductivity of sample with less exfoliation time is some higher than sample with high exfoliation time.

Keywords: activated carbon, exfoliation, coagulation by wet spinning, graphene oxide fiber

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687
2 Influence of Organic Modifier Loading on Particle Dispersion of Biodegradable Polycaprolactone/Montmorillonite Nanocomposites

Authors: O. I. H. Dimitry, N. A. Mansour, A. L. G. Saad

Abstract:

Natural sodium montmorillonite (NaMMT), Cloisite Na+ and two organophilic montmorillonites (OMMTs), Cloisites 20A and 15A were used. Polycaprolactone (PCL)/MMT composites containing 1, 3, 5, and 10 wt% of Cloisite Na+ and PCL/OMMT nanocomposites containing 5 and 10 wt% of Cloisites 20A and 15A were prepared via solution intercalation technique to study the influence of organic modifier loading on particle dispersion of PCL/ NaMMT composites. Thermal stabilities of the obtained composites were characterized by thermal analysis using the thermogravimetric analyzer (TGA) which showed that in the presence of nitrogen flow the incorporation of 5 and 10 wt% of filler brings some decrease in PCL thermal stability in the sequence: Cloisite Na+>Cloisite 15A > Cloisite 20A, while in the presence of air flow these fillers scarcely influenced the thermoxidative stability of PCL by slightly accelerating the process. The interaction between PCL and silicate layers was studied by Fourier transform infrared (FTIR) spectroscopy which confirmed moderate interactions between nanometric silicate layers and PCL segments. The electrical conductivity (σ) which describes the ionic mobility of the systems was studied as a function of temperature and showed that σ of PCL was enhanced on increasing the modifier loading at filler content of 5 wt%, especially at higher temperatures in the sequence: Cloisite Na+<Cloisite 20A<Cloisite 15A, and was then decreased to some extent with a further increase to 10 wt%. The activation energy Eσ obtained from the dependency of σ on temperature using Arrhenius equation was found to be lowest for the nanocomposite containing 5 wt% of Cloisite 15A. The dispersed behavior of clay in PCL matrix was evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses which revealed partial intercalated structures in PCL/NaMMT composites and semi-intercalated/semi-exfoliated structures in PCL/OMMT nanocomposites containing 5 wt% of Cloisite 20A or Cloisite 15A.

Keywords: nanocomposite, Electrical Conductivity, Activation Energy, montmorillonite, exfoliation, polycaprolactone, organoclay, intercalation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
1 The Effect of Processing Parameters of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate on the Level of Exfoliation

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

The study of the effect of the processing parameters on the level of intercalation between the layered silicate and polymer of two different methodology took place. X-ray diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectrometry, and Transmission Electron Microscopy were utilized in order to examine the intercalation level of nanocomposites of both methodologies. It was found that drying the clay prior to mixing with the polymer, mixing time and speed, degassing time, and the curing method had major changes to the level of distribution of the nanocomposites structure. In methodology 1, the presence of aggregation layers was observed at only 2.5 wt.% clay loading whereas in methodology 2 the presence of aggregation layers was found at higher clay loading (i.e. 5 wt.%).

Keywords: Nanocomposites, exfoliation, vinyl ester, intercalation, layered silicate, characterisations, aggregation layers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375