Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12

Cancer Related Publications

12 Hypothesis of a Holistic Treatment of Cancer: Crab Method

Authors: Devasis Ghosh

Abstract:

The main hindrance to total cure of cancer is a) the failure to control continued production of cancer cells, b) its sustenance and c) its metastasis. This review study has tried to address this issue of total cancer cure in a more innovative way. A 10-pronged “CRAB METHOD”, a novel holistic scientific approach of Cancer treatment has been hypothesized in this paper. Apart from available Chemotherapy, Radiotherapy and Oncosurgery, (which shall not be discussed here), seven other points of interference and treatment has been suggested, i.e. 1. Efficient stress management. 2. Dampening of ATF3 expression. 3. Selective inhibition of Platelet Activity. 4. Modulation of serotonin production, metabolism and 5HT receptor antagonism. 5. Auxin, its anti-proliferative potential and its modulation. 6. Melatonin supplementation because of its oncostatic properties. 7. HDAC Inhibitors especially valproic acid use due to its apoptotic role in many cancers. If all the above stated seven steps are thoroughly taken care of at the time of initial diagnosis of cancer along with the available treatment modalities of Chemotherapy, Radiotherapy and Oncosurgery, then perhaps, the morbidity and mortality rate of cancer may be greatly reduced.

Keywords: Cancer, stress, Serotonin, valproic acid, ATF3 dampening, auxin modulation, platelet activation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
11 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis

Authors: Carlos Huertas, Reyes Juarez-Ramirez

Abstract:

Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.

Keywords: Cancer, Mass Spectrometry, Feature selection, biomarker discovery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079
10 Metabolomics Profile Recognition for Cancer Diagnostics

Authors: Valentina L. Kouznetsova, Jonathan W. Wang, Igor F. Tsigelny

Abstract:

Metabolomics has become a rising field of research for various diseases, particularly cancer. Increases or decreases in metabolite concentrations in the human body are indicative of various cancers. Further elucidation of metabolic pathways and their significance in cancer research may greatly spur medicinal discovery. We analyzed the metabolomics profiles of lung cancer. Thirty-three metabolites were selected as significant. These metabolites are involved in 37 metabolic pathways delivered by MetaboAnalyst software. The top pathways are glyoxylate and dicarboxylate pathway (its hubs are formic acid and glyoxylic acid) along with Citrate cycle pathway followed by Taurine and hypotaurine pathway (the hubs in the latter are taurine and sulfoacetaldehyde) and Glycine, serine, and threonine pathway (the hubs are glycine and L-serine). We studied interactions of the metabolites with the proteins involved in cancer-related signaling networks, and developed an approach to metabolomics biomarker use in cancer diagnostics. Our analysis showed that a significant part of lung-cancer-related metabolites interacts with main cancer-related signaling pathways present in this network: PI3K–mTOR–AKT pathway, RAS–RAF–ERK1/2 pathway, and NFKB pathway. These results can be employed for use of metabolomics profiles in elucidation of the related cancer proteins signaling networks.

Keywords: Cancer, Metabolites, Metabolic Pathway, signaling pathway

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
9 Use of Magnetic Nanoparticles in Cancer Detection with MRI

Authors: A. Taqaddas

Abstract:

Magnetic Nanoparticles (MNPs) have great potential to overcome many of the shortcomings of the present diagnostic and therapeutic approaches used in cancer diagnosis and treatment. This Literature review discusses the use of Magnetic Nanoparticles focusing mainly on Iron oxide based MNPs in cancer imaging using MRI.

Keywords: Cancer, Imaging, MRI, magnetic nanoparticles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
8 Pre-Clinical Studying of Antitumor Ramon Preparation: Chronic Toxicity

Authors: Raissa A. Muzychkina, Irina M. Korulkina, Dmitriy Yu. Korulkin

Abstract:

In article the data of chronic toxicity for pre-clinical researches of Ramon preparation is described. Ramon effects to hormone system and gastrointestinal tract; local irritative effect, allergic, pyrogenic properties and reaction to the immune system were studied.

Keywords: Cancer, Toxicity, anthraquinones, phytopreparation, Ramon, antitumor activity, pre-clinical testing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
7 Pre-Clinical Studying of Antitumor Ramon Preparation: Specific Activity

Authors: Raissa A. Muzychkina, Irina M. Korulkina, Dmitriy Yu. Korulkin

Abstract:

In article the data of pre-clinical researches of Ramon preparation is described. Antitumor activity of Ramon has been studied on 19 strains of transplantated tumors of different hystogenesis.

Keywords: Cancer, anthraquinones, phytopreparation, Ramon, antitumor activity, pre-clinical testing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
6 Pre-Clinical Studying of Antitumor Ramon Preparation: Acute Toxicity

Authors: Raissa A. Muzychkina, Irina M. Korulkina, Dmitriy Yu. Korulkin

Abstract:

In article the data of acute toxicity for pre-clinical researches of Ramon preparation is described. Ramon effects to clinical characteristics of blood, cardio-vascular system, hepatotoxic and diuretic effects were studied.

Keywords: Cancer, Toxicity, anthraquinones, phytopreparation, Ramon, antitumor activity, pre-clinical testing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
5 Gene Expression Signature for Classification of Metastasis Positive and Negative Oral Cancer in Homosapiens

Authors: A. Shukla, A. Tarsauliya, R. Tiwari, S. Sharma

Abstract:

Cancer classification to their corresponding cohorts has been key area of research in bioinformatics aiming better prognosis of the disease. High dimensionality of gene data has been makes it a complex task and requires significance data identification technique in order to reducing the dimensionality and identification of significant information. In this paper, we have proposed a novel approach for classification of oral cancer into metastasis positive and negative patients. We have used significance analysis of microarrays (SAM) for identifying significant genes which constitutes gene signature. 3 different gene signatures were identified using SAM from 3 different combination of training datasets and their classification accuracy was calculated on corresponding testing datasets using k-Nearest Neighbour (kNN), Fuzzy C-Means Clustering (FCM), Support Vector Machine (SVM) and Backpropagation Neural Network (BPNN). A final gene signature of only 9 genes was obtained from above 3 individual gene signatures. 9 gene signature-s classification capability was compared using same classifiers on same testing datasets. Results obtained from experimentation shows that 9 gene signature classified all samples in testing dataset accurately while individual genes could not classify all accurately.

Keywords: Cancer, classification, SAM, Gene Signature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
4 A Pairwise-Gaussian-Merging Approach: Towards Genome Segmentation for Copy Number Analysis

Authors: Chih-Hao Chen, Hsing-Chung Lee, Qingdong Ling, Hsiao-Jung Chen, Sun-Chong Wang, Li-Ching Wu, H.C. Lee

Abstract:

Segmentation, filtering out of measurement errors and identification of breakpoints are integral parts of any analysis of microarray data for the detection of copy number variation (CNV). Existing algorithms designed for these tasks have had some successes in the past, but they tend to be O(N2) in either computation time or memory requirement, or both, and the rapid advance of microarray resolution has practically rendered such algorithms useless. Here we propose an algorithm, SAD, that is much faster and much less thirsty for memory – O(N) in both computation time and memory requirement -- and offers higher accuracy. The two key ingredients of SAD are the fundamental assumption in statistics that measurement errors are normally distributed and the mathematical relation that the product of two Gaussians is another Gaussian (function). We have produced a computer program for analyzing CNV based on SAD. In addition to being fast and small it offers two important features: quantitative statistics for predictions and, with only two user-decided parameters, ease of use. Its speed shows little dependence on genomic profile. Running on an average modern computer, it completes CNV analyses for a 262 thousand-probe array in ~1 second and a 1.8 million-probe array in 9 seconds

Keywords: Cancer, Pathogenesis, segmentation analysis, chromosomal aberration, copy number variation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136
3 A Tubular Electrode for Radiofrequency Ablation Therapy

Authors: Carlos L. Antunes, Tony R. Almeida, Nélia Raposeiro, Belarmino Gonçalves, Paulo Almeida, André Antunes

Abstract:

In the last two decades radiofrequency ablation (RFA) has been considered a promising medical procedure for the treatment of primary and secondary malignancies. However, the needle-based electrodes so far developed for this kind of treatment are not suitable for the thermal ablation of tumors located in hollow organs like esophagus, colon or bile duct. In this work a tubular electrode solution is presented. Numerical and experimental analyses were performed to characterize the volume of the lesion induced. Results show that this kind of electrode is a feasible solution and numerical simulation might provide a tool for planning RFA procedure with some accuracy.

Keywords: Cancer, Medical Therapy, radiofrequency ablation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
2 Community Detection-based Analysis of the Human Interactome Network

Authors: Razvan Bocu, Sabin Tabirca

Abstract:

The study of proteomics reached unexpected levels of interest, as a direct consequence of its discovered influence over some complex biological phenomena, such as problematic diseases like cancer. This paper presents a new technique that allows for an accurate analysis of the human interactome network. It is basically a two-step analysis process that involves, at first, the detection of each protein-s absolute importance through the betweenness centrality computation. Then, the second step determines the functionallyrelated communities of proteins. For this purpose, we use a community detection technique that is based on the edge betweenness calculation. The new technique was thoroughly tested on real biological data and the results prove some interesting properties of those proteins that are involved in the carcinogenesis process. Apart from its experimental usefulness, the novel technique is also computationally effective in terms of execution times. Based on the analysis- results, some topological features of cancer mutated proteins are presented and a possible optimization solution for cancer drugs design is suggested.

Keywords: Cancer, betweenness centrality, interactome networks, proteinprotein interactions, protein communities

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
1 A Systems Approach to Gene Ranking from DNA Microarray Data of Cervical Cancer

Authors: Frank Emmert Streib, Matthias Dehmer, Jing Liu, Max Mühlhauser

Abstract:

In this paper we present a method for gene ranking from DNA microarray data. More precisely, we calculate the correlation networks, which are unweighted and undirected graphs, from microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to progression of the tumor. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth and, hence, indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.

Keywords: Cancer, graph similarity, DNA microarray data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352