Study of Parameters Affecting the Electrostatic Attractions Force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Study of Parameters Affecting the Electrostatic Attractions Force

Authors: Vahid Sabermand, Yousef Hojjat, Majid Hasanzadeh

Abstract:

This paper contains 2 main parts. In the first part of paper we simulated and studied three types of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode length and methods of improvement of adhesion force by changing these values.

Keywords: Electrostatic force, electrostatic adhesion, electrostatic chuck, electrostatic application in industry, Electroadhesive grippers.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1097337

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2738

References:


[1] H. Prahlad, R. Pelrine, S. Stanford, J. Marlow, R. Kornbluh, “Electroadhesive Robots-Wall Climbing Robots Enabled by a Novel, Robust, and Electrically Controllable Adhesion Technology”, IEEE International Conference on Robotics and Automation, 2008, pp. 3028-3033.
[2] G. Monkman, “Electroadhesive micro grippers”, Ind. Robot, 30, 2003, pp 326-330.
[3] T. Higuchi, A. Horikoshi, T. Komori, “Development of an actuator for super clean rooms and ultra-high vacua”, Proc. 2nd Int. Symp. on Magnetic Bearings, Tokyo, 1990, pp. 115-122.
[4] Jeon, J. U., Park, K. Y., & Higuchi, T., “Contactless suspension and transportation of glass panels by electrostatic forces.”, Sensors and Actuators A: Physical, 134(2), 2007, pp. 565-574.‏
[5] B. Hu, L. Wang, Y. Zhao, Z. Fu,” A miniature wall climbing robot with biomechanical suction cups”, Ind. Robot. Int. J. 36(6), 2009, pp. 551-561.
[6] D. Santos, S. Kim, M. Spenko, A. Parness, M. Cutkosky, “Directional adhesive structures for controlled climbing on smooth vertical surfaces”, IEEE ICRA, Rome, Italy, 2007, pp. 1262-1267.
[7] B. Aksak, M. Murphy, M. Sitti, “Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces”, IEEE International Conference on Robotics and Automation, 2008, pp.3058-2063.
[8] J. Yu, S. Chary, S. Das, J. Tamelier, N. Pesika, K. Turner, J. Isrealachvili, “Gecko inspired dry adhesive for robotic applications”, Adv. Func. Mater. 21(16), 2011, pp. 3010-3018.
[9] Autumn, K., Dittmore, A., Santos, D., Spenko, M., & Cutkosky, M., “Frictional adhesion: a new angle on gecko attachment.”, Journal of Experimental Biology, 209(18), 2006, pp. 3569-3579.
[10] Sitti, M., & Fearing, R. S., “Synthetic gecko foot-hair micro/nano-structures as dry adhesives.”, Journal of Adhesion Science and Technology, 17(8), 2003, pp. 1055-1073.
[11] Chang, J. S., Kelly, A. J., & Crowley, J. M., “Handbook of electrostatic processes”, CRC Press, 1995, pp.10-23‏