WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/9999864,
	  title     = {Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer},
	  author    = {K. Benyounes and  A. Benmounah},
	  country	= {},
	  institution	= {},
	  abstract     = {Cement-based grouts has been used successfully to
repair cracks in many concrete structures such as bridges, tunnels,
buildings and to consolidate soils or rock foundations. In the present
study the rheological characterization of cement grout with
water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement
of cement by bentonite (2 to 10% wt) in presence of superplasticizer
(0.5% wt) was investigated. Several rheological tests were carried out
by using controlled-stress rheometer equipped with vane geometry in
temperature of 20°C. To highlight the influence of bentonite and
superplasticizer on the rheological behavior of grout cement, various
flow tests in a range of shear rate from 0 to 200 s-1 were observed.
Cement grout showed a non-Newtonian viscosity behavior at all
concentrations of bentonite. Three parameter model Herschel-
Bulkley was chosen for fitting of experimental data. Based on the
values of correlation coefficients of the estimated parameters, The
Herschel-Bulkley law model well described the rheological behavior
of the grouts. Test results showed that the dosage of bentonite
increases the viscosity and yield stress of the system and introduces
more thixotropy. While the addition of both bentonite and
superplasticizer with cement grout improve significantly the fluidity
and reduced the yield stress due to the action of dispersion of SP.
},
	    journal   = {International Journal of Chemical and Molecular Engineering},
	  volume    = {8},
	  number    = {11},
	  year      = {2014},
	  pages     = {1180 - 1183},
	  ee        = {https://publications.waset.org/pdf/9999864},
	  url   	= {https://publications.waset.org/vol/95},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 95, 2014},
	}