Open Science Index, Mechanical and Mechatronics Engineering Vol:8, No:10, 2014 publications.waset.org/9999606/pdf

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering
Vol:8, No:10, 2014

Analysis of a Self-Acting Air Journal Bearing:
Effect of Dynamic Deformation of Bump Foil

H. Bensouilah, H. Boucherit, M. Lahmar

Abstract—A theoretical investigation on the effects of both
steady-state and dynamic deformations of the foils on the dynamic
performance characteristics of a self-acting air foil journal bearing
operating under small harmonic vibrations is proposed. To take into
account the dynamic deformations of foils, the perturbation method is
used for determining the gas-film stiffness and damping coefficients
for given values of excitation frequency, compressibility number, and
compliance factor of the bump foil. The nonlinear stationary
Reynolds’ equation is solved by means of the Galerkins’ finite
element formulation while the finite differences method are used to
solve the first order complex dynamic equations resulting from the
perturbation of the nonlinear transient compressible Reynolds’
equation. The stiffness of a bump is uniformly distributed throughout
the bearing surface (generation I bearing). It was found that the
dynamic properties of the compliant finite length journal bearing are
significantly affected by the compliance of foils especially whenthe
dynamic deformation of foils is considered in addition to the static
one by applying the principle of superposition.

Keywords—Elasto-aerodynamic lubrication, Air foil bearing,
Steady-state deformation, Dynamic deformation, Stiffness and
damping  coefficients, Perturbation method, Fluid-structure
interaction, Galerk infinite element method, Finite difference method.

1. INTRODUCTION

IR foil bearings so-called aerodynamic journal bearings

are the machine components which find nowadays
widespread use in very high speed, lightly loaded oil-free
rotating turbo machinery because they have theoretically no
speed limitations, and they are environmentally benign. In the
design of such bearings, it is of cardinal importance to
enhance their steady state and dynamic performance
characteristics for the safety operation, especially against the
external dynamic excitations [1], [2]. Fig. 1 shows a schematic
picture of a typical elastically supported foil bearing. As
illustrated, it schematically consists of a cylindrical shell
(sleeve) lined with corrugated bumps (bump foil) topped with
a thin flat foil (top foil). The bump foil serves as a support for
the top metal foil and its compliant feature allows the top foil
to deform under the action of aerodynamic pressure. This
latter is generated in the air film when the shaft (journal)
rotates over a certain angular speed. Air foil bearings were
constantly modified several times in order to improve their
performances. In fact, there are three generations of air foil
bearings. One distinguishes one generation from another by
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the complexity of the spring resistance in the bump foil. The
latest bump foil bearings being developed are of the so-called
“generation I[II” variety [3], [4]. The bumps of the first designs
of these bearings, so-called generation I, are uniformly stiff.
Generation II bump foils vary but only on one axis. In
generation III bearings, however, the stiffness of the bumps is
varied to optimize air film pressure. This complex variation of
bump stiffness increases the load capacity of generation III
bearings to more than twice that of best previous generation
designs. Historically, air foil bearings first came into wide-
spread use in the 1960’s, when they began to appear in such
applications as the air-cycle machines (ACM) that cool and
pressurize commercial and military airplanes and, more
recently, natural-gas compressors. These bearings have several
advantages over oil lubricated bearings [5].
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Fig. 1 Cross section schematic of a typical foil bearing

They have theoretically no speed limitations, and they
usually work better at temperature extremes than oil bearings
because most oils break down at very high temperatures and
become overly viscous at low temperatures [4]. Besides, they
require less maintenance and they can be stored indefinitely,
unlike oiled bearings, which must be cleaned and run
periodically. And they are environmentally benign. On the
other hand, an engine that incorporates air foil bearings will be
lighter than its oil-dependent counterpart [6]. Foil bearings are
somewhat lighter than the ball bearings they replace. This is
due to the elimination of the lubrication system (pumps,
filters, plumbing and so on) that oil-lubricated bearings require
[7], [8]. Over the past decades, a considerable number of
theoretical and experimental studies have been made on the
performance characteristics of air-lubricated bearings by many
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researchers [9]. As far as we know, there are very few research
works treating the dynamic properties of such bearings by
taking into consideration the dynamic deformation of foils in
addition to the static one even for highly loaded bearings. The
main objective of the present research is to theoretically
investigate the stiffness and damping characteristics of a
compliant self-acting air lubricated bearing by considering
both static and dynamic deformations of the bearing structure
which is built up with thin metal foils by applying the
principle of superposition. In addition, one desires to
determine how these rotor-dynamic coefficients vary with
some operating conditions, such as dynamic excitation
frequency. The rotor-dynamic coefficients will be determined
from the view point of linear dynamics, i.e. for small harmonic
vibrations amplitudes of the rigid rotor using a perturbation
method, and will serve as input data for the stability and
unbalance response analyses of rotor-bearing system. The
calculations are generally performed for the following cases:
(1) rigid gas bearing, (2) only static deformation of the bearing
structure is considered, (3) both static and dynamic
deformations are taken into account.

Smooth top foil

4

ump foil

th 4 @ j\
Fig. 2 Detailed configuration of the bump foil

II. MATHEMATICAL FORMULATION

A. Steady-State Film Thickness Expression

For a compliant journal bearing, the steady-state film
thickness is calculated by

hy = C(1+&, cos@)+U, (1)

where Uj is the radial deformation of the bump foil due to the
steady-state aerodynamic pressure. As a first approximation,
the corrugated sub-foil is modeled as a simple Winkler elastic
foundation, i.e. the stiffness of a bump is uniformly distributed
throughout the bearing surface (isotropic stiffness). With this
consideration, the steady-state radial deformation of a bump is
proportional to the pressure difference (p, - p, ), i.e.

International Scholarly and Scientific Research & Innovation 8(10) 2014

1728

U, =1L, (po - pu) 2)

where p, and p, are the steady-state gas-film and ambient

pressures, respectively.

represents the compliance of the bump foil, inversely

proportional to the bump foil stiffness K. As depicted in Fig.
2,s is the bump pitch, / is half of the bump length, ?, is the

bump foil thickness, £ and o are the Young’s modulus and
Poisson’s ratio of bump foil material, respectively [1].
Accordingly, the steady-state film thickness is written as

h, :C(l+e30 cos0)+L0(p0—pa) 3)
In dimensionless form, (3) reads
hy =1+&,cos0+a(p,—1) “4)

where & is the dimensionless compliance operator defined
as:

3
_ 2p,s L _ 2
(7))
B. Steady-State and Dynamic Compressible Reynolds’
Equations, and Boundary Conditions
If we assume that the journal (rotor) is excited into a simple
harmonic motion of small amplitudes within the compliant

bearing at frequency v, the instantaneous eccentricity ratio and
attitude angle may be expressed respectively as [10]:

=g, +Ase” andg =g, + Age’” ;

Ag| << gyandi = J-1 %)

‘Ag‘ << g,

where ¥ = v/ is the relative excitation frequency, and Ag
and A¢ are complex amplitudes of eccentricity ratio and

attitude angle, respectively. Under these conditions, the
transient hydrodynamic lubrication problem is governed by
the following differential equations whose the unknown

functions are the steady state air-film pressure ﬁo, and the
complex dynamic pressures Q‘g and Q¢ :

h3@%]+ﬂ/a(

) op 8. -
2 | = A—(p,h (6)
ae[ 00 ) "z j (Bi)

00 ~
0z
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with /i, =sin@+U,
It is noted that (6) is a nonlinear equation while (7) and (8)

are complex linear with equations respect to Q and Q¢ , and

they are easily solved if the steady-state film thickness ho and

steady-state pressure field ﬁo are obtained from (4) and (6).

The boundary conditions associated to these equations are:

Do =lat2=i% (%a)
P,(0=0,2)=p,(0=27,7)=1 (9b)
P,(60=6,,7)=1, and%(az@,z):o (9¢)

and
0,=0,=0atz_z (10a)
0.0=0,2)=0.(0=27,%)=0 (10b)
0,(0=0,%)=0,(0=27,%)=0 (10c)
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C. Fluid-Film Dynamic Coeﬁ’ cients
The complex distributions Q and Q¢ are obtained from

(7) and (8) from which the eight dynamic coefficients in the
£, @ -coordinate system can be calculated by integrations:

e _ e 4
=-2[ [0, cos0dzd0° Z,,=-2] [ O, cos0dzd6
00 00
)
22 )4 2/
=2 [ Q,sin0dzd0; Z,,=-2] [ 0,sin0dzd6
00 00

where Z_=A_+iyB,,, etc. are the dimensionless complex
ZEE)’ ansts = %Im(zss)’ ete.

are the dimensionless stiffness and damping coefficients,
respectively.

impedances, and 4 :Real(

III. NUMERICAL TREATMENT OF STEADY-STATE AND
DyYNAMIC REYNOLDS’ EQUATIONS

In the present investigation, the stationary equation is
solved using the Galerkin’s finite element method while the
dynamic equations are solved by means of the finite difference
technique. Because of the axial symmetry of the bearing, so
only the half bearing is divided into y x_ equal rectangular

cells (elements) with an area equal to A@xAZ where

AG = 2 and AZ = S are the mesh sizes in the

0 :
circumferential and axial directions, respectively.

IV. METHOD OF SOLUTION

The steady-state solution of elastoaero dynamic problem
which is considered as a highly nonlinear fluid-structure
interaction problem is obtained by the substitution method.
This method consists of building up a series of solutions

{P()(O)}’ {Po(l)}’ _____ , {Po(k“)}, {Po(k)}; {Po(k)}being calculated

from {R)(k_l) }by solving the linear system:

[k (PP} = (Pt

We can write this in incremental form by introducing the
residual vector {R(k)}:

®Y= 1R (

1))}; k=1, 2, ...kya

where Q is a relaxation factor which ensures and accelerates
the convergence of the iterative process.
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To obtain the steady-state and dynamic solutions of elasto-

aerodynamic problem, the following steps of the

computational procedure are then performed:

1. Select the input parameters of the problem
80 5R9L3C5tbrs) l; E; O-y a)apa’ﬂ

2. Initialize the iteration number £ to 0, the norm ||n|| to 1.,
and the global vector containing nodal dimensionless
steady-state pressures {E)(k)}= 1.

3. While (Ju] > &, )and (k <) do

max

Set k< k+1

Calculate the dimensionless steady-state film thickness
profile using (4) for eachnode of the finite element grid
Initialize global matrices [K] and {F} to 0.

For each element:

Extract the elementary vector {p(()k_l)} from the global
vector {PZ)("‘I)} as well as the eclementary global

coordinates arrays of each node by means of the
connectivity array

Compute the elementary matrices [ke(P(()k_l))] and

{ /. ( p(()k "1))} using the Gauss-Legendre quadrature
Assemble [ke]in [K], and {fe} in {F}
Form the reduced matrices [Kr] and {Fr} by

introducing the essential boundary conditions (9a) and
(9b)

Solve the reduced linear system [K , ]{Po(k) } = {Fr }for the
(k)

reduced global pressure vector {Po }using the successive

over-relaxation (SOR) method to take into account the
boundary condition (9c¢)

Form the global pressure vector {Po(k)}from {Po(k) }and the

values of boundary conditions

Calculate {AE](k) } = {Po(k) }— {Po(k_l) }and the relative
(o)

<Po(k)>{PO<k)}

least square norm of{AE)(k)}, ie. H"H =

Update the global pressure vector:
{po(k)}: {Po(k_l)}"' QO{APO(k)}
End do while

Calculate the steady-state lift force and the steady-state
attitude angle ¢,

Code the nodes for which the steady-state pressure is
greater than the ambient pressure. This step is necessary
to solve the first order complex dynamic equations.

Solve the linear partial differential equations, (7) and (8)
over the finite difference grid with SOR scheme to obtain

the complex dynamic pressures ég and Q¢. It should be

noted that the calculations are performed for each coded
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node belonging to the over-ambient region without
vanishing the computed negative pressure terms. The

pressure convergence criterion 1s
A k+1 Ak
| P
Max W < 107> where the symb01| | means
:
%ij
here the magnitude of the complex quantity

Q(’Hl) _ é(k)
& Y and a=(z, o).

UQ(k+1)

v

Compute the fluid-film complex impedances and deduce
the stiffness and damping coefficients.

V.RESULTS AND DISCUSSION

Based on the analysis described in the present paper, two

separate computer codes were developed to study the effects
of elastic deformations of the bump foil on the steady state and
dynamic performance characteristics of a compliant air foil
bearing using the algorithm described above.

1730

29 -
< '
&
L2
Og _
LX)
L]
I i
g ; !
g 0.1
9“211; L5 CII
(a) Rigid gas bearing
14
e
=
&,
Lo |
- o
0y _/"'/ : : Fellie Sl 0.5
. - o - T 04
0 O S ;
0p | TR T 0.
P 02
g T -1___/0-"1 l,!f"'J
L175] g %
T [
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Fig. 3 Steady-state pressure distributions
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A. Effects of Elastic Deformations in Both Steady State and
Dynamic Pressures

The calculations were performed for: A =1.07,a =04,
B7=0.5, 9% =2x10" which are the steady-state

eccentricity ratio, the compressibility number, the compliance
factor, and the aspect and clearance ratios of the journal
bearing, respectively. Fig. 3 depicts the steady-state pressure
profiles and contours calculated in the half bearing for a

o e T e o
Re milmiamame =

Sooos
i

S0
ks

highly loaded journal bearing operating at &,=0.8. It is

T G T W TR Y

observed that the effect of the bump-foil elasticity leads to a
spreading of the pressure distribution in the circumferential
direction of the bearing over a greater area and to an important
reduction of the peak pressure inducing a reduction of the
journal bearing carrying capacity. The increasing of the fluid-
film thickness over the whole bearing area explains the (b) 0=0.4 (Static deformation only)
pressure drop.

It is also observed that the 3-D plots of the steady-state
pressure field present sub-ambient pressures which occur in
the divergent region of both rigid and compliant foil bearings.
The existence of sub-ambient region provides the suction
necessary to replenish the air pumped out by side.

In Figs. 4 and 5, we compare the distributions of real and

o T
Gl.fzn.ﬁ 0,

imaginary parts of the complex dynamic pressure QE

Real(Q, )

calculated in the half bearing for rigid and compliant bearings

and &,=0.8. As found under steady-state conditions, the

elastic deformations of the bump foil also affect the maximum
value of both dynamic pressures and this effect is more
pronounced when the dynamic deformation is considered in
addition to the static one. Similar trends were observed for the

real and imaginary parts of the dynamic pressure (J, .
. . ) Q¢ ) (c) 0=0.4 (both static and dynamic deformations)
Besides, it should be pointed out that almost similar trends

were found for both rigid and compliant self-acting liquid-
lubricated journal bearings (incompressible case) [10]. o,

Fig. 4 Representations in 3D of the real part of the dynamic pressure
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(c) 0=0.4 (both static and dynamic deformations)

Fig. 5 Representations in 3D of the imaginary part of the dynamic

pressure Qg

B. Effects of Dynamic Deformations on the Dynamic
Coefficients

In Fig. 6, stiffness and damping coefficients of the rigid air
bearing are plotted as a function of excitation frequency ratio.

The rotor speed is38krpm and the steady-state eccentricity
ratio is 0.8 (heavy load). The results show that the dynamic
coefficients stay mainly constants for high values of the
excitation frequency.

However, we observe a nonlinear evolution of these
coefficients for lower frequency ratios. The direct stiffness

coefficient in the load (vertical) direction @y, is the largest

and it increases as the excitation frequency ratio y increases.
The direct stiffness coefficient in the horizontal direction

ay, displays similar behaviour, except that it peaks at a
smaller value.

The cross-coupled stiffness coefficients a,,,d,, , and the
direct stiffness a,, are significantly smaller in magnitude

than the direct stiffness in the vertical direction a,, over the

entire range of excitation frequency ratios investigated.
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The damping coefficients decrease monotonically and
converge with increasing excitation frequency ratio.
Furthermore, the values of cross-coupled damping

coefficients bXY and bYX differ from each other significantly

instead of being equal as predicted by the incompressible
hydrodynamic lubrication theory.

It can be concluded that the excitation frequency sensitively
affects the air foil bearing dynamic coefficients, and all the
damping coefficients decrease in higher frequency region and
vanish when y — +00.

25

r=v/m

T=v/®

Fig. 6 Stiffness and damping coefficients of the rigid air bearing as
functions of excitation frequency ratio

In Figs. 7 and 8, stiffness and damping coefficients
calculated for a compliant foil bearing are plotted as a function

of excitation frequency ratio for&, = 0.8.

We observe that the elastic deformations of the bump foil
significantly affect the eight dynamic coefficients over the
entire range of excitation frequencies, and this effect is more
pronounced when the dynamic deformation is considered in
addition to the static one.

Compared to the rigid case, the taking into account of both
static and dynamic deformations of the bump foil leads to an
important reduction of stiffness and damping coefficients.
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Fig. 8 Damping coefficients of the compliant air foil bearing as

Fig. 7 Stiffness coefficients of the compliant air foil bearing as . o .
functions of excitation frequency ratio

functions of excitation frequency ratio
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VI. CONCLUSIONS

The following conclusions are drawn from the results
obtained in this investigation:

1) The excitation frequency sensitively affects the air foil
bearing dynamic coefficients even in the rigid case;

2) The elastic deformations of the bump foil affect the
maximum value of both steady-state and dynamic
pressures and this effect is more pronounced when the
dynamic deformations are considered in addition to the
static ones;

3) The taking into account of dynamic deformations of the
bump foil leads to an important reduction of the stiffness
and damping coefficients over the entire range of
excitation frequencies.
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