Application of the Experimental Planning Design to the Notched Precracked Tensile Fracture of Composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Application of the Experimental Planning Design to the Notched Precracked Tensile Fracture of Composite

Authors: N. Mahmoudi

Abstract:

Composite materials have important assets compared to traditional materials. They bring many functional advantages: lightness, mechanical resistance and chemical, etc. In the present study we examine the effect of a circular central notch and a precrack on the tensile fracture of two woven composite materials. The tensile tests were applied to a standardized specimen, notched and a precarcked (orientation of the crack 0°, 45° and 90°). These tensile tests were elaborated according to an experimental planning design of the type 23.31 requiring 24 experiments with three repetitions. By the analysis of regression, we obtained a mathematical model describing the maximum load according to the influential parameters (hole diameter, precrack length, angle of a precrack orientation). The specimens precracked at 90° have a better behavior than those having a precrack at 45° and still better than those having of the precracks oriented at 0°. In addition the maximum load is inversely proportional to the notch size.

Keywords: Polymer matrix, Glasses, Fracture.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096485

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818

References:


[1] Ouinas D, Serier B and Bouiadjra B. Intéraction d'une fissure émanant d'entaille semi-circulaire orientée perpendiculairement à l'interface céramique/métal. J. Revue des composites et des matériaux avancés 2005; 5: 221-244.
[2] Naik NK, Shembeker PS. Notched strength of fabric laminates I: prediction. J.Comp Sci & Technol 1992; 44:1-12.
[3] Xiao J, Bathias C. Modified tan’s model for the strength prediction of woven laminates with circular holes. J.Comp Eng 1993; 3: 961-973.
[4] Kim JK, Kim DS, Takeda N. Notched strength and fracture criterion in fabric composites containing a circular hole. J. Comp Mater 1995; 29: 982-998.
[5] Ashbee K.H.G and Wyatt R.C. Water damage in glass fiber-resin composites. Proc.R.Soc .London; 1969, A312, p. 553-564.
[6] ASTM 2004. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. D3039/D3039M; edition 2004.
[7] Scheffler E. Einfürung in die Praxis der statistischen Versuchsplannung. VEB deutscher Verlag für Grund stoffindustrie. Leipzig; 1986.
[8] Nalimov V. P., Tschernova N. A. Statistischieski Methodi Planirovania Extremalnick Experimentov. Naouka Moscou; 1965.
[9] Vivier S. Stratégie d’optimisation par la méthode des plans d’expériences et application aux dispositifs électroniques modélisés par éléments finis. Thèse de Doctorat. Ecole centrale de Lille; 2002.
[10] Hebbar A. Méthodes statistiques de planification extrémale des expériences, Polycopié. Université de Mostaganem; 2006.
[11] Srinivas M., Kamat S.V. and Rama Rao P. Influence of mixed mode I/III loading on the fracture toughness of mild steel at various strain rates. J. Materials Science and Technology 2004; 20: 235-242.
[12] Luhowiak W. et Collot C. Influence du diamètre des bulles sur la microfissuration d'un joint collé. J. Materials and Structures 2006; 19: 127-32.
[13] Chan K.S and Cruse T.A. Stress intensity factors for anisotropic compact-tension specimens with inclined cracks. J. Engineering Fracture Mechanics 1986; 23: 863-874
[14] Tallaron C, Rousy D. Thermomechanical behaviour under static and cyclic loading, of multidirectionnal laminated C/C composites materials, with or without notches. Institut national des sciences appliquées de Lyon. Travaux Universitaires, Villeurbanne, France; 1996.
[15] Weiju R and Theodore N. Notch size effects on high cycle fatigue limit stress of Udimet 720. J. Materials Science and Engineering A 2003; 357: 41-152.
[16] Lukás P. Kunz L, Weiss B. Stickler R. Notch Size Effect In Fatigue. J. Fatigue & Fracture of Engineering Materials & Structures 2007; 12: 3175 -186.
[17] Akourri O, Louah M, Kifani A. Gilgert G. and Pluvinage G. The effect of notch radius on fracture toughness JIc. J. Engineering Fracture Mechanics 2000; 65: 491-505.
[18] Zhou B. Kokin K. Effect of surface pre-crack morphology on the fracture of thermal barrier coatings under thermal shock. J. Acta Materialia 2004; 52: 4189-4197.
[19] Naghipour P, Bartsch M, Chernova L, Hausmann J and Voggenreiter H. Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics: Numerical and experimental investigations. J. Materials Science and Engineering:A 2010; 527: 3509-517.
[20] Wood M.D.K, Sun X, Tong L, Katzos A. Rispler, A.R. The Effect of Stitch distribution on Mode I delamination toughness of stitched laminated composites– experimental results and fea simulation. J. Composites Science and Technology 2007; 67: 1058-1072.
[21] Luhowiak W et Collot C. Influence du diamètre des bulles sur la microfissuration d'un joint collé. J. Materials and Structures 2006; 19: 27-32.
[22] Xu S, Shen G and Tyson W.R. Effect of crack-tip plasticity on crack length estimation methods for SENB sample. Engineering Fracture Mechanics; 2005, p.1454-1459.
[23] Wen-Shyong K, Tse-Hao K and Cheng-Po C. Effect of weaving processes on compressive behavior of 3D woven composites. J. Composites Part A: Applied Science and Manufacturing 2007; 38: 555- 565.
[24] Documentations A.N.G.I S.R.L, Commercial offices and warehouse 14018 Villafranca d'Asti, Italie, [email protected]
[25] Swanson R. E, Thompson A. W. and Bernstein I. M. Effect of notch root radius on stress intensity in mode I and mode III loading. J. Metallurgical and Materials Transactions A 2007; 17: 1633-1637.
[26] Mohamed K. Kaleemulla A and Siddeswarappa B. Effect of notch size and fibre content on the tensile strength of fabric reinforced hybrid composites. J. International Journal of Materials and Product Technology 2008; 31: 283 – 292.