Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers

Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko

Abstract:

The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.

Keywords: Artificial neural networks, fluorescence, data aggregation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096473

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057

References:


[1] M. Zellweger, Fluorescence spectroscopy of exogenous, exogenouslyinduced and endogenous fluorofores for the photodetection and photodynamic therapy of cancer. Lausanne, USA, 2000, pp. 117-122.
[2] D. Evanko, "The new fluorescent probes on the block,” Nat Methods, vol. 5, pp. 218-219, 2008.
[3] A.P. Demchenko, Introduction to Fluorescence Sensing, Springer Science + Business Media B.V., 2009.
[4] L.M. Wysocki, L.D. Lavis, "Advances in the chemistry of small molecule fluorescent probes” Current Opinion in Chemical Biology, vol. 15(6), pp. 752—759, 2011.
[5] V.A. Oleynikov, A.V. Sukhanova, I.R. Nabiev, "Fluorescent semiconductor nanocrystals in biology and medicine,” Russian Nanotechnology, vol. 2 (1-2), pp. 160-173, 2007.
[6] V. Biju, T. Itoh, A. Anas, A. Sujith, & M. Ishikawa, "Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications,” Anal Bioanal Chem, vol. 391, pp.2469-2495, 2008.
[7] D.Ho (ed.). Nanodiamonds, applications in biology and nanoscale medicine, New York, 2009
[8] Y.Y. Hui, C.L. Cheng, H.C. Chang, "Nanodiamonds for optical bioimaging,” J Phys D Appl Phys, vol. 43, pp.374021-374031, 2010.
[9] A. M. Schrand, S. A. Ciftan Hens O. A. Shenderova, "Nanodiamond particles: properties and perspectives for bioapplications,” Critical Reviews in Solid State and Materials Sciences, vol. 34, pp.18–74, 2009.
[10] A.M. Schrand, H.J. Huang, C. Carlson, J.J. Schlager, E. Osawa, S.M. Hussain, L.M. Dai, "Are diamond nanoparticles cytotoxic” J. Phys. Chem. B, vol. 111, pp.2–7, 2007.
[11] C.C. Fu, H.Y. Lee, K. Chen, T.S. Lim, H.Y. Wu, P.K. Lin, P.K. Wei, P.H. Tsao, H.C. Chang, W. Fann, "Characterization and application of single fluorescent nanodiamonds as cellular biomarkers,” PNAS, vol.104(3), pp.727-732, 2007.
[12] T.A.Dolenko, S.A.Burikov, K.A.Laptinskiy, T.V.Laptinskaya, J.M.Rosenholm, A.A. Shiryaev, A.R.Sabirov, I.I.Vlasov, "Study of adsorption properties of functionalized nanodiamonds in aqueous solutions of metal salts using optical spectroscopy,” J. of Alloys and Compounds, vol.586, pp.S436-S439, 2014.
[13] T.A.Dolenko, S.A.Burikov, J.M.Rosenholm, O.A.Shenderova, I.I.Vlasov, "Diamond-water coupling effects in Raman and Photoluminescence of nanodiamond colloidal suspensions,” J. Phys. Chem. С, vol.116, pp.24314-24319, 2012.
[14] S.C. Hens, W. Lawrence, A.S. Kumbhar, O. Shenderova, "Photoluminescent nanostructures from graphite oxidation,” J. of Phys. Chem. C, vol.116, pp. 20015-20022, 2012.
[15] P.G. Luo, S. Sahu, S.T. Yang, S.K. Sonkar, J. Wang, H. Wang, G. E. LeCroy, L. Cao, Y.P. Sun, "Carbon "quantum” dots for optical bioimaging,” J. Mater. Chem. B, vol.1, pp. 2116-2127, 2013.
[16] L. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang, P.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, S.Y. Xie, Y.P. Sun, "Carbon Dots for Multiphoton Bioimaging,” J. Am. Chem. Soc., vol. 129, pp. 11318- 11319, 2007.
[17] O. Shenderova, S. Hens, I. Vlasov, S. Turner, Y.G. Lu, G.V. Tendeloo, A. Schrand, S. Burikov, T. Dolenko. "Carbon dot - decorated nanodiamonds,” Particle&Particle Systems Characterization, vol. 31(5), pp.580-590, 2014.
[18] M. O. Oyewumi, K.G. Rice, in: R.B. Gupta, U.B. Kompella (Eds.), Nanoparticle Technology for Drug Delivery, New York, USA, 2006, p.361-379
[19] J.M. Rosenholm, C. Sahlgren, and M. Linden, "Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges,” Nanoscale, vol.2, pp.1870– 1883, 2010.
[20] E. Haartman, H. Jiang, A.A. Khomich, J. Zhang, S.A. Burikov, T.A. Dolenko, J. Ruokolainen, H. Gu, O.A. Shenderova, I.I. Vlasov, J.M. Rosenholm, "Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: Fabrication,” J. of Materials Chemistry B, vol.1(18), pp.2358-2366, 2013.
[21] N. Prabhakar, T. Nareoja, E. Haartman, D.S. Karaman, H. Jiang, S. Koho, T.A. Dolenko, P. Hanninen, D.I. Vlasov, V.G. Ralchenko, S. Hosomi, I.I. Vlasov, C. Sahlgren, J.M. Rosenholm, "Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: Application,” Nanoscale, vol.5(9), pp.3713-3722, 2013.
[22] C. Cremer, T. Cremer, "Considerations on a laser-scanning microscope with high resolution and depth of field,” Microsc. Acta., vol. 81(1), pp.31–44, 1978.
[23] A.V. Feofanov "Spectral laser scanning confocal microscopy in biological research,” Uspekhi Biologicheskikh Nauk, vol. 47, pp.371- 410, 2007.
[24] L.W. Zhang, N.A. Monteiro-Riviere, "Use of confocal microscopy for nanoparticle drug delivery through skin,” Journal of Biomedical Optics, vol. 18(6), pp. 061214.1-061214.5, 2013.
[25] S. Klein, S. Petersen, U. Taylor, D. Rath, S. Barcikowski, "Quantification of colloidal and intracellular gold nanomarkers down to the single particle level using confocal microscopy,” Proc. of SPIE, vol. 7573, pp. 75730L-1, 2010.
[26] D.O. Lapotko, E.Y. Lukianova, S.A. Chizhik, "Methods for monitoring and imaging nanoparticles in cells,” Proc. of SPIE, vol. 6447, pp. 644703-1, 2007.
[27] X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, G. Hüttmann, "Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes,” Journal of Biomedical Optics, vol.13(3), pp. 031217, 2008.
[28] S. Kantelhardt, J. Leppert, N. Petkus, G. Hüttmann, V. Rohde, and A. Giese, "Multiphoton microscopy and fluorescence lifetime imaging of brain and brain tumor tissue,” J. Neuro-Oncol., vol. 8(4), pp. 494–494, 2006.
[29] A.C. Curry, M. Crow, A. Wax, "Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using darkfield microspectroscopy and immunotargeted nanoparticles,” Journal of Biomedical Optics, vol.13(1), pp.014022, 2008.
[30] F. Verpillat, F. Joud, P. Desbiolles, M. Gross, "Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles,” Opt Express, vol. 19(27), pp.26044-26055, 2011.
[31] M.H. Hassoun, Fundamentals of Artificial Neural Networks. Massachusetts, USA, 1995.
[32] E. Keedwell, Intelligent Bioinformatics: The Application of Artificial Intelligence Techniques to Bioinformatics Problems. Wiley, 2005.
[33] Zagoruiko N.G, Applied methods of analysis of data and knowledge. Novosibirsk, Russia, 1999 (in Russian).
[34] A.N. Gorban’, V.L. Dunin-Barkovskiy et al. Neiroinformatics. Part 4. Terekhov S.A. Neural network based information models of complex engineering systems. Novosibirsk, Russia, 1998 (in Russian).
[35] M. Li, B. Verma, X. Fan, K. Tickle, "RBF neural networks for solving the inverse problem of backscattering spectra,” Neural Computing & Applications, vol.17(4), pp.391-397, 2008.
[36] H. Yang, M. Xu, "Solving inverse bimodular problems via artificial neural network,” Inverse Problems in Science and Engineering, pp.1741-5977, 2009.
[37] Y.I. Neimark, Z.S. Batalova et al., Pattern recognition and medical diagnostics. Moscow, Russia, 1972 (in Russian).
[38] A. Ya. Chervonenkis. "Application of methods of pattern recognition in the problems of molecular biology,” Problemy upravleniya, vol. 4, pp. 41–46, 2005.
[39] T. Dramiґcanin, I. Zekoviґc, B. Dimitrijeviґc, S. Ribar, M.D. Dramiґcanin, "Optical biopsy method for breast cancer diagnosis based on artificial neural network classification of fluorescence landscape data,” Acta Phys. Pol. A, vol. 116, pp. 690–2, 2009.
[40] L. Lenhardt, I. Zekoviґc, T. Dramiґcanin, and M. D. Dramiґcanin. "Artificial neural networks for processing fluorescence spectroscopy data in skin cancer diagnostics,” Physica Scripta, vol.T157, pp. 014057 (4pp), 2013.
[41] I.V. Gerdova, S.A. Dolenko, T.A. Dolenko, I.V. Churina, V.V. Fadeev, "New opportunity solutions to inverse problems in laser spectroscopy involving artificial neural networks,” Izvestiya Akademii Nauk Seriya Fizicheskaya, vol. 66(8), pp. 1116-1124, 2002.
[42] S. Dolenko, T. Dolenko, S. Burikov, V. Fadeev, A. Sabirov, I. Persiantsev, "Comparison of input data compression methods in neural network solution of inverse problem in laser Raman spectroscopy of natural waters,” In: A.E.P. Villa et al. (Eds.): ICANN 2012, Part II. Lecture Notes in Computer Science, vol.7553, pp.443-450, 2012.
[43] S. Haykin Neural Networks. A Comprehensive Foundation. Prentice Hall International, 1999.
[44] http://www.neuroproject.ru/aboutproduct.php?info=ns2info