Spectral Broadening in an InGaAsP Optical Waveguide with χ(3) Nonlinearity Including Two Photon Absorption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Spectral Broadening in an InGaAsP Optical Waveguide with χ(3) Nonlinearity Including Two Photon Absorption

Authors: Keigo Matsuura, Isao Tomita

Abstract:

We have studied a method to widen the spectrum of optical pulses that pass through an InGaAsP waveguide for application to broadband optical communication. In particular, we have investigated the competitive effect between spectral broadening arising from nonlinear refraction (optical Kerr effect) and shrinking due to two photon absorption in the InGaAsP waveguide with χ(3) nonlinearity. The shrunk spectrum recovers broadening by the enhancement effect of the nonlinear refractive index near the bandgap of InGaAsP with a bandgap wavelength of 1490 nm. The broadened spectral width at around 1525 nm (196.7 THz) becomes 10.7 times wider than that at around 1560 nm (192.3 THz) without the enhancement effect, where amplified optical pulses with a pulse width of ∼ 2 ps and a peak power of 10 W propagate through a 1-cm-long InGaAsP waveguide with a cross-section of 4 (μm)2.

Keywords: InGaAsP Waveguide, χ(3) Nonlinearity, Spectral Broadening.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1337465

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4217

References:


[1] G. P. Agrawal, Fiber-Optic Communication Systems, 4th ed., New Jersey: Wiley&Sons, 2010.
[2] C. Lin ed., Broadband Optical Access Networks and Fiber-to-the-Home: Systems Technologies and Deployment Strategies, 1st ed., West Sussex: Wiley&Sons, 2006.
[3] J. Darja, M. J. Chan, M. Sugiyama, and Y. Nakano, "Four channel DFB laser array with integrated combiner for 1.55 μm CWDM systems by MOVPE selective area growth”, IEICE Electronic Express 3 (24), 2006, pp.522-528.
[4] W. Li, X. Zhang, and J. Yao, "Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology”, Opt. Exp. 21 (17), 2013, pp.19966-19971.
[5] T.Morioka, K, Mori, and M. Saruwatari, "More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers”, Electron. Lett. 29 (10), 1993, pp.862-864.
[6] T.Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, "1 T bit/s (100 Gbit/s × 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source”, Electron. Lett. 32 (10), 1996, pp.906-907.
[7] M. Asobe, K. Naganuma, T. Kaino, T. Kanamori, S. Tomaru, and T. Kurihara, "Switching energy limitation in all-optical switching due to group velocity dispersion of highly nonlinear optical waveguides”, Appl. Phys. Lett. 64 (22), 1994, pp.2922-2924.
[8] A. M. Darwish and E. P. Ippen, H. Q. Le, J. P. Donnelly, S. H. Groves, and E. A. Swanson, "Short-pulse wavelength shifting by four wave mixing in passive InGaAsP/InP waveguides”, Appl. Phys. Lett. 68 (15), 1996, pp.2038-2040.
[9] T. L. Koch, T. J. Bridges, E. G. Burkhardt, P. J. Corvini, L. A. Coldren, R. A. Linke, W. T. Tsang, R. A. Logan, L. F. Johnson, R. F. Kazarinov, R. Yen, and D. P. Wilt, "1.55-μm InGaAsP distributed feedback vapor phase transported buried heterostructure lasers”, Appl. Phys. Lett. 47 (1), 1985, pp.12-14.
[10] K. L. Hall, J. Mark, E. P. Ippen, and G. Eisenstein, "Femtosecond gain dynamics in InGaAsP optical amplifiers”, Appl. Phys. Lett. 56 (18), 1990, pp.1740-1742.
[11] J. S. Parker, P. R. A. Binetti, A. Bhardwaj, R. S. Guzzon, E. J. Norberg, H. Yung Jr., and L. A. Coldren, "Comparison of comb-line generation from InGaAsP/InP integrated ring mode-locked lasers”, in Proc. Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, U.S.A., May 2011, Paper No.CTuV6.
[12] J. S. Parker, P. R. A. Binetti, H. Yung Jr., and L. A. Coldren, "Frequency tuning in integrated InGaAsP/InP ring mode-locked lasers”, J. Lightwave Technol. 30 (9), 2012, pp.1278-1283.
[13] G. Agrawal, Nonlinear Fiber Optics, 5th ed., New York: Academic Press, 2013.
[14] W. H. Press, S. A. Teukolsky,W. T. Vetterling, B. P. Flannery, Numerical Recipes in C++, 2nd ed. Cambridge: Cambridge University Press, 2002.
[15] K. Nakatsuhara, T. Mizumoto, R. Munakata, Y. Kigure, and Y. Naito, "Optical bistable devices controlled with pump beam feedback”, in Proc. Opto-Electronics and Communications Conference (OECC), Chiba, Japan, July 1996, Paper No.18P-13.
[16] K. Nakatsuhara, T. Mizumoto, S. Hossain, S. H. Jeong ; Y. Tsukishima, B. J. Ma, and Y. Nakano, "GaInAsP-InP distributed feedback waveguides for all-optical switching”, IEEE J. Select. Topics in Quantum Elect. 6 (1), 2000, pp.143-149.
[17] E. Kotelnikov, A. Katsnelson, K. Patel, and I. Kudryashov, "High-power single-mode InGaAsP/InP laser diodes for pulsed operation”, in Proc. SPIE, Novel In-Plane Semiconductor Lasers XI, Vol.8277, 2012, p.827715 (6 pages).