WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/9999369,
	  title     = {Enzymatic Saccharification of Dilute Alkaline Pre-treated Microalgal (Tetraselmis suecica) Biomass for Biobutanol Production},
	  author    = {M. A. Kassim and  R. Potumarthi and  A. Tanksale and  S. C. Srivatsa and  S. Bhattacharya},
	  country	= {},
	  institution	= {},
	  abstract     = {Enzymatic saccharification of biomass for reducing
sugar production is one of the crucial processes in biofuel production
through biochemical conversion. In this study, enzymatic
saccharification of dilute potassium hydroxide (KOH) pre-treated
Tetraselmis suecica biomass was carried out by using cellulase
enzyme obtained from Trichoderma longibrachiatum. Initially, the
pre-treatment conditions were optimised by changing alkali reagent
concentration, retention time for reaction, and temperature. The T.
suecica biomass after pre-treatment was also characterized using
Fourier Transform Infrared Spectra and Scanning Electron
Microscope. These analyses revealed that the functional group such
as acetyl and hydroxyl groups, structure and surface of T. suecica
biomass were changed through pre-treatment, which is favourable for
enzymatic saccharification process. Comparison of enzymatic
saccharification of untreated and pre-treated microalgal biomass
indicated that higher level of reducing sugar can be obtained from
pre-treated T. suecica. Enzymatic saccharification of pre-treated T.
suecica biomass was optimised by changing temperature, pH, and
enzyme concentration to solid ratio ([E]/[S]). Highest conversion of
carbohydrate into reducing sugar of 95% amounted to reducing sugar
yield of 20 (wt%) from pre-treated T. suecica was obtained from
saccharification, at temperature: 40°C, pH: 4.5 and [E]/[S] of 0.1
after 72 h of incubation. Hydrolysate obtained from enzymatic
saccharification of pretreated T. suecica biomass was further
fermented into biobutanol using Clostridium saccharoperbutyliticum
as biocatalyst. The results from this study demonstrate a positive
prospect of application of dilute alkaline pre-treatment to enhance
enzymatic saccharification and biobutanol production from
microalgal biomass.
},
	    journal   = {International Journal of Bioengineering and Life Sciences},
	  volume    = {8},
	  number    = {9},
	  year      = {2014},
	  pages     = {1014 - 1019},
	  ee        = {https://publications.waset.org/pdf/9999369},
	  url   	= {https://publications.waset.org/vol/93},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 93, 2014},
	}