A Mathematical Modelling to Predict Rhamnolipid Production by Pseudomonas aeruginosa under Nitrogen Limiting Fed-Batch Fermentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
A Mathematical Modelling to Predict Rhamnolipid Production by Pseudomonas aeruginosa under Nitrogen Limiting Fed-Batch Fermentation

Authors: Seyed Ali Jafari, Mohammad Ghomi Avili, Emad Benhelal

Abstract:

In this study, a mathematical model was proposed and the accuracy of this model was assessed to predict the growth of Pseudomonas aeruginosa and rhamnolipid production under nitrogen limiting (sodium nitrate) fed-batch fermentation. All of the parameters used in this model were achieved individually without using any data from the literature. The overall growth kinetic of the strain was evaluated using a dual-parallel substrate Monod equation which was described by several batch experimental data. Fed-batch data under different glycerol (as the sole carbon source, C/N=10) concentrations and feed flow rates were used to describe the proposed fed-batch model and other parameters. In order to verify the accuracy of the proposed model several verification experiments were performed in a vast range of initial glycerol concentrations. While the results showed an acceptable prediction for rhamnolipid production (less than 10% error), in case of biomass prediction the errors were less than 23%. It was also found that the rhamnolipid production by P. aeruginosa was more sensitive at low glycerol concentrations. Based on the findings of this work, it was concluded that the proposed model could effectively be employed for rhamnolipid production by this strain under fed-batch fermentation on up to 80 g l- 1 glycerol.

Keywords: Fed-batch culture, glycerol, kinetic parameters, modelling, Pseudomonas aeruginosa, rhamnolipid.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1094581

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404

References:


[1] J. D. Desai, and I. M. Banat, "Microbial production of surfactants and their commercial potential,” Microbiol. Mol. Biol. Rev., 61, 1997, 47-64.
[2] G. Soberón-Chávez, Biosurfactants: from genes to applications. Springer, New York, 2011.
[3] C. F. C. D. Rosa, M. Michelon, J. F. D. M Burkert, S. J. Kalil, and C. A. V. Burkert, "Production of a rhamnolipid-type biosurfactant by Pseudomonas aeruginosa LBM10 grown on glycerol,” Afr. J. Biotechnol., 9, 2010, 9012-9017.
[4] A. A. Koutinas, R. Wang, I. K. Kookos, and C. Webb, "Kinetic parameters of Aspergillus awamori in submerged cultivations on whole wheat flour under oxygen limiting conditions,” Biochem. Eng. J., 16, 2003, 23-34.
[5] L. Z. Chen, S. K. Nguang, and X. D. Chen, Modelling and optimization of biotechnological processes: Artificial intelligence approaches. Springer, New York, 2006.
[6] Y. Li, H. Jiang, X. Du, X. Huang, X. Zhang, Y. Xu, and Y. Xu, "Enhancement of phenazine-1-carboxylic acid production using batch and fed-batch culture of gacA inactivated Pseudomonas sp. M18G,” Bioresour. Technol., 101, 2010, 3649-3656.
[7] C. Park, T. H. Kim, S. Kim, J. Lee, and S. W. Kim, "Biokinetic parameter estimation for degradation of 2, 4, 6-trinitrotoluene (TNT) with Pseudomonas putida KP-T201,” J. Biosci. Bioeng., 94, 2002, 57- 61.
[8] N. P. Guerra, A. T. Agrasar, C. L. Macı́as, and L. Pastrana, "Modelling the fed-batch production of pediocin using mussel processing wastes,” Process Biochem., 40, 2005, 1071-1083.
[9] S. Khanna, and A. K. Srivastava, "Computer simulated fed-batch cultivation for over production of PHB: A comparison of simultaneous and alternate feeding of carbon and nitrogen,” Biochem. Eng. J., 27, 2006, 197-203.
[10] N. P. Guerra, P. F. Bernárdez, and L. P. Castro, "Modelling the stress inducing biphasic growth and pediocin production by Pediococcus acidilactici NRRL B-5627 in re-alkalized fed-batch cultures,” Biochem. Eng. J., 40, 2008, 465-472.
[11] S. Srivastava, and A. K. Srivastava, "Biological phosphate removal by model based fed-batch cultivation of Acinetobacter calcoaceticus,” Biochem. Eng. J., 40, 2008, 227-232.
[12] C. H. Luna-Flores, J. J. Ramírez-Cordova, C. Pelayo-Ortiz, R. Femat, and E. J. Herrera-Lopez, "Batch and fed-batch modeling of carotenoids production by Xanthophyllomyces dendrorhous using Yucca fillifera date juice as substrate,” Biochem. Eng. J., 53, 2010, 131-136.
[13] H. Song, M. H. Eom, S. Lee, J. Lee, J. H. Cho, and D. Seung, "Modeling of batch experimental kinetics and application to fed-batch fermentation of Clostridium tyrobutyricum for enhanced butyric acid production,” Biochem. Eng. J., 53, 2010, 71-76.
[14] A. Roosta, A. Jahanmiri, D. Mowla, and A. Niazi, "Mathematical modeling of biological sulfide removal in a fed batch bioreactor,” Biochem. Eng. J., 58, 2011, 50-56.
[15] S. N. R. L. Silva, C. B. B. Farias, R. D. Rufino, J. M. Luna, and L. A. Sarubbo, "Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992,” Colloids Surf., B, 79, 2010, 174- 183.
[16] E. Haba, M. J. Espuny, M. Busquets and A. Manresa, "Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils,” J. Appl. Microbiol., 88, 2000, 379-387.
[17] T. Masuko, A. Minami, N. Iwasaki, T. Majima, S. I. Nishimura, and Y. C. Lee, "Carbohydrate analysis by a phenol–sulfuric acid method in microplate format,” Anal. Biochem., 339, 2005, 69-72.
[18] M. GhomiAvili, M. H. Fazaelipoor, S. A. Jafari, S. A. Ataei, "Comparison between batch and fed-batch production of rhamnolipid by Pseudomonas aeruginosa,” Iran. J. Biotechnol., 10, 2012.
[19] I. J. Dunn, E. Heinzle, J. Ingham, and J. E. Prenosil, Biological reaction engineering: dynamic modelling fundamentals with simulation examples. 2nd ed. Wiley-VCH, New York, 2003.
[20] G. G. Evans, and J. Furlong, Environmental biotechnology: Theory and application. 2nd ed. Wiley, 2010.
[21] D. J. Kim, J. W. Choi, N. C. Choi, B. Mahendran, and C. E. Lee, "Modeling of growth kinetics for Pseudomonas spp. during benzene degradation,” Appl. Microbiol. Biotechnol., 69, 2005, 456-462.
[22] H. Beyenal, S. N. Chen, and Z. Lewandowski, "The double substrate growth kinetics of Pseudomonas aeruginosa,” Enzyme Microb. Technol., 32, 2003, 92-98.
[23] A. Ghosalkar, V. Sahai, and A. Srivastava, "Optimization of chemically defined medium for recombinant Pichia pastoris for biomass production,” Bioresour. Technol., 99, 2008, 7906-7910.
[24] D. Hekmat, R. Bauer, and J. Fricke, "Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans,” Bioprocess. Biosyst. Eng., 26, 2003, 109-116.
[25] R. Usaite, K. R. Patil, T. Grotkjær, J. Nielsen, and B. Regenberg, "Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation,” Appl. Environ. Microbiol., 72, 2006, 6194-6203.
[26] J. L. Casas López, J. A. Sánchez Pérez, J. M. Fernández Sevilla, F. G. Acién Fernández, E. Molina Grima, and Y. Chisti, "Production of lovastatin by Aspergillus terreus: effects of the C: N ratio and the principal nutrients on growth and metabolite production,” Enzyme Microb. Technol., 33, 2003, 270-277.
[27] O. T. Ramírez, R. Zamora, R. Quintero, and A. López-Munguía, "Exponentially fed-batch cultures as an alternative to chemostats: The case of penicillin acylase production by recombinant E. coli,” Enzyme Microb. Technol., 16, 1994, 895-903.
[28] K. M. Lee, S. H. Hwang, S. D. Ha, J. H. Jang, D. J. Lim, and J. Y. Kong, "Rhamnolipid production in batch and fed-batch fermentation using Pseudomonas aeruginosa BYK-2 KCTC 18012P,” Biotechnol. Bioprocess Eng., 9, 2004, 267-273.
[29] C. Larsson, G. Lidén, C. Niklasson, and L. Gustafsson, "Calorimetric control of fed-batch cultures of Saccharomyces cerevisiae,” Bioprocess. Eng., 7, 1991, 151-155.
[30] S. K. Yoon, W. K. Kang, and T. H. Park, "Fed-batch operation of recombinant Escherichia coli containing trp promoter with controlled specific growth rate,” Biotechnol. Bioeng., 43, 1994, 995-999.
[31] H. J. Oberle, and B. Sothmann, "Numerical computation of optimal feed rates for a fed-batch fermentation model,” J. Optim. Theory Appl., 100, 1999, 1-13.
[32] J. F. Van Impe, and G. Bastin, "Optimal adaptive control of fed-batch fermentation processes,” Control Eng. Pract., 3, 1995, 939-954.
[33] G. Birol, C. Ündey, and A. Cinar, "A modular simulation package for fed-batch fermentation: penicillin production,” Comput. Chem. Eng., 26, 2002, 1553-1565.
[34] A. Ashoori, B. Moshiri, A. Khaki-Sedigh, and M. R. Bakhtiari, "Optimal control of a nonlinear fed-batch fermentation process using model predictive approach,” J. Process Control, 19, 2009, 1162-1173.