@article{(Open Science Index):https://publications.waset.org/pdf/9999189,
	  title     = {Silver Modified TiO2/Halloysite Thin Films for Decontamination of Target Pollutants},
	  author    = {Dionisios Panagiotaras and  Elias Stathatos and  Dimitrios Papoulis},
	  country	= {},
	  institution	= {},
	  abstract     = { Sol-gel method has been used to fabricate
nanocomposite films on glass substrates composed halloysite clay
mineral and nanocrystalline TiO2. The methodology for the synthesis
involves a simple chemistry method utilized nonionic surfactant
molecule as pore directing agent along with the acetic acid-based solgel
route with the absence of water molecules. The thermal treatment
of composite films at 450oC ensures elimination of organic material
and lead to the formation of TiO2 nanoparticles onto the surface of
the halloysite nanotubes. Microscopy techniques and porosimetry
methods used in order to delineate the structural characteristics of the
materials. The nanocomposite films produced have no cracks and
active anatase crystal phase with small crystallite size were deposited
on halloysite nanotubes. The photocatalytic properties for the new
materials were examined for the decomposition of the Basic Blue 41
azo dye in solution. These, nanotechnology based composite films
show high efficiency for dye’s discoloration in spite of different
halloysite quantities and small amount of halloysite/TiO2 catalyst
immobilized onto glass substrates. Moreover, we examined the
modification of the halloysite/TiO2 films with silver particles in order
to improve the photocatalytic properties of the films. Indeed, the
presence of silver nanoparticles enhances the discoloration rate of the
Basic Blue 41 compared to the efficiencies obtained for unmodified
films.
},
	    journal   = {International Journal of Chemical and Molecular Engineering},
	  volume    = {8},
	  number    = {9},
	  year      = {2014},
	  pages     = {914 - 920},
	  ee        = {https://publications.waset.org/pdf/9999189},
	  url   	= {https://publications.waset.org/vol/93},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 93, 2014},
	}