
 

 

  
Abstract—This paper investigates the natural convection heat 

transfer performance in a complex-wavy-wall cavity filled with 
power-law fluid. In performing the simulations, the continuity, 
Cauchy momentum and energy equations are solved subject to the 
Boussinesq approximation using a finite volume method. The 
simulations focus specifically on the effects of the flow behavior index 
in the power-law model and the Rayleigh number on the flow 
streamlines, isothermal contours and mean Nusselt number within the 
cavity. The results show that pseudoplastic fluids have a better heat 
transfer performance than Newtonian or dilatant fluids. Moreover, it is 
shown that for Rayleigh numbers greater than Ra=103, the mean 
Nusselt number has a significantly increase as the flow behavior index 
is decreased. 
 

Keywords—Non-Newtonian fluid, Power-law fluid, Natural 
convection, Heat transfer enhancement, Cavity, Wavy wall. 

I. INTRODUCTION 
ATURAL convection in regular cavities (e.g., square or 
rectangular) is of importance in many engineering 

systems, such as electronic cooling devices, heat exchangers, 
MEMS devices, electric machinery, solar energy collectors, 
and so on [1]. Natural convection in irregular cavities, e.g., 
wavy-wall cavities, is also important for many applications due 
to the potential for an enhanced heat transfer performance. 

Mahmud et al. [2] examined the natural convection 
phenomenon within a cavity bounded by two isothermal wavy 
walls and two adiabatic straight walls. Oztop et al. [3] 
investigated the problem of natural convection within 
wavy-wall cavities with a volumetric heat source. Cho et al. [4] 
investigated the natural convection heat transfer performance 
within a cavity with complex-wavy-wall surfaces. Overall, the 
results presented in [2]-[4] show that the flow characteristics 
and heat transfer performance in wavy-wall cavities depend 
strongly on both the geometry parameters of the wavy surface 
and the flow parameters. 

The studies described above all consider a Newtonian fluid. 
However, in many engineering applications (e.g., oil drilling, 
slurry transport, paper making, food processing, polymer 
engineering, and so on), the fluid is non-Newtonian. As a result, 
the natural convection heat transfer performance of 
non-Newtonian fluids has also attracted significant attention in 
the literature. For example, Kim et al. [5] investigated the 
transient buoyant convection of a power-law fluid within a 
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square cavity. The results showed that the rheological property 
of the power-law fluid had a significant effect on the flow 
behavior and heat transfer performance within the cavity under 
both transient and steady-state conditions; particularly under 
high Rayleigh numbers and low Prandtl numbers. Lamsaadi et 
al. [6] studied the natural convection heat transfer performance 
of power-law fluids enclosed within a shallow horizontal 
rectangular cavity uniformly heated from one side. The results 
showed that given a high Prandtl number and a cavity with a 
large aspect ratio, the heat transfer behavior was dominated by 
the flow behavior index of the power-law fluid and the 
Rayleigh number. Lamsaadi et al. [7] investigated the natural 
convection heat transfer characteristics of power-law fluids 
enclosed in a tilted shallow rectangular cavity. The results 
further showed that for a large aspect ratio and a high Prandtl 
number, the heat transfer performance depended on the 
inclination angle of the cavity. Turan et al. [8] investigated the 
natural convection behavior of power-law fluids in a square 
cavity with differentially-heated side walls. It was shown that 
the mean Nusselt number increased with an increasing 
Rayleigh number, but decreased with an increasing flow 
behavior index. Khezzar et al. [9] studied the natural 
convection heat transfer performance of power-law fluids in a 
rectangular inclined cavity. The results showed that 
shear-thinning and shear-thickening fluids improved and 
reduced the heat transfer performance, respectively, compared 
to that obtained using a Newtonian fluid. 

The studies in [5]-[9] all consider the natural convection heat 
transfer of non-Newtonian fluids within regular cavities. 
However, as mentioned earlier, the heat transfer characteristics 
of non-Newtonian fluids enclosed within wavy-wall cavities 
are also an important concern in many practical engineering 
problems. Accordingly, the present study performs a numerical 
investigation into the natural convection heat transfer 
performance of non-Newtonian fluids within a cavity 
comprising left and right walls with complex-wavy surfaces 
and a constant high and low temperature, respectively, and 
upper and lower horizontal walls with an insulated condition. 
The simulations focus specifically on the effects of the flow 
behavior index and the Rayleigh number on the flow 
streamlines, isothermal contours and mean Nusselt number 
within the cavity.  

 
II. MATHEMATICAL FORMULATION 

Fig. 1 illustrates the complex-wavy-wall cavity considered in 
the present study. As shown, the cavity has a width and a 
height. The related mathematical formulations and numerical 
solution procedure are described in the following. 
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