Genetic Polymorphisms and Haplotype Structure of the Organic Cation Transporter 1 Gene in the Zulu Population of South Africa
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Genetic Polymorphisms and Haplotype Structure of the Organic Cation Transporter 1 Gene in the Zulu Population of South Africa

Authors: N. Hoosain, S. Nene, B. Pearce, C. Jacobs, M. Du Plessis, M. Benjeddou

Abstract:

Organic cation transporter (OCT) 1could influence an individual’s response to various treatments and increase their susceptibility to diseases.Genotypic and allelic frequencies of nineteen non-synonymous and one intronic Single Nucleotide Polymorphism (SNP) from the OCT1 gene were determined in 101 unrelated healthy Zulu participants, using a SNaPshot® multiplex assay. Minor allele frequencies (MAF)were compared to representative populations of Africa, Asia and Europe, from Ensembl. MAFs for S14F, V519F, rs622342 and P341L were 2.0%, 6.0%, 6.0% and 1.0%, respectively. Sixteen of nineteen investigated non-synonymous SNPs were monomorphic. No study participant harbored variant alleles for S189L, G220V, P283L, G401S, M420V, M440I, G465R, I542V, R61C, R287G, C88S, A306T, A413V, I421F, C436F and V501E. Haplotype, CGTCGCCGCGCAAGAGGTGA, was most frequently observed (81.23%).Further investigations are encouraged to evaluate potential roles these SNPs could play in the therapeutic efficacy of clinically important drugs and in the development of various diseases in the Zulu population.

Keywords: OCT1, PCR, SNaPshot assay, Zulu population.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1094060

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229

References:


[1] M. Hayer, H. Bönisch, and M. Brüss, "Molecular cloning, functional characterization and genomic organization of four alternatively spliced isoforms of the human organic cation transporter 1 (hOCT1/SLC22A1),” Ann Hum Genet, vol. 63, Nov. 1999, pp. 473-482.
[2] S. Verhaagh, N. Schweifer, D. P. Barlow, and R. Zwart,"Cloning of the mouse and human solute carrier 22a3 (Slc22a3/SLC22A3) identifies a conserved cluster of three organic cation transporters on mouse chromosome 17 and human 6q26-q27,” Genomics, vol. 55,Jan 1999, pp. 209-218.
[3] M.L. Becker, L. E. Visser, R. H. van Shaik, A. Hofman, A. G. Uitterlinden, and B. H. Stricker, "Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus,” Pharmacogenomics J, vol. 9, Aug. 2009, pp. 242-247.
[4] M. Takeda, S. Khamdang, S. Narikawa, H. Kimura, Y. Kobayashi, T. Yamamoto et al., "Human organic anion transporters and human organic cation transporters mediate antiviral transport,” J Pharmacol Exp Ther, vol. 300, Mar. 2002, pp. 918-924.
[5] N. Kimura, S. Masuda, Y. Tanihara, H. Ueo, M. Okuda, T. Katsura et al., "Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1,” Drug Metab Pharmacokinet, vol 20, Oct. 2005, pp. 379-386.
[6] A. Yonezawa, S. Masuda, S. Yokoo, T. Katsura, and K. L. Inui, "Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and MATE family),” J Pharmacol Exp Ther, vol. 319, Aug. 2006, pp. 879-886.
[7] M. L. Reitman and E. E. Schadt, "Pharmacogenetics of metformin response: a step in the path toward personalized medicine,” J Clin. Invest, vol. 117, May 2007, pp. 1226-1229.
[8] N. Jung, C. Lehmann, A. Rubbert, M. Knispel, P. Hartmann, J. van Lunzenet al, "Relevance of the organic cation transporters 1 and 2 for antiretroviral therapy in HIV infection,” Drug Metab Dispos, vol. 36, Aug. 2008, pp. 1616-1623.
[9] G. Minuesa, C. Volk, M. Molina-Areas, V. Gorboulev, I. Erkizia, P. Arndt et al., "Transport of lamivudine (3TC) and high-affinity interaction of nucleoside reverse transcriptase inhibitors with human organic cation transporters 1, 2 and 3,” J Pharmacol Exp Ther, vol. 329, Jan. 2009, 252-261.
[10] M. K. Choi and I. S. Song, "Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences,” Drug Metab Pharmacokinet,vol. 23, Sep. 2008, pp. 243-253.
[11] E. Herraez, E. Lozano, R. I. Macias, J. Vaquero, L. Bujanda, J. M. Banales et al, "Expression of SLC22A1 variants may affect the response of hepatocellular carcinoma and cholangiocarcinoma to sorafenib,” Hepatology, vol. 58, Sep. 2013, pp. 1065-1073.
[12] Y. Shu, M. K. Leabman, B. Feng, L. M. Mangravite, C. C. Huang, D. Stryke et al., "Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1,” Proc Natl Acad Sci USA, vol. 100, May 2003, pp. 5902-5907.
[13] T. Sakata, N. Anzai, H. J. Shin, R. Noshiro, T. Hirata, H. Yokoyama et al., "Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions,” Biochem Biophys Res Commun, vol. 313, Jan. 2004, pp. 789-793.
[14] H. J. Kang, I. S. Song, H. J. Shin, W. Y. Kim, C. H. Lee, J. C. Shim et al., "Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population,” Drug Metab Dispos, vol 35,Apr. 2007, pp. 667-675.
[15] R. Kerb, U. Brinkmann, N. Chatskaia, D. Gorbunov, V. Gorboulev, E. Mornhinweg et al., "Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences,” Pharmacogenetics, vol. 12, Nov. 2002, pp. 591-595.
[16] Y. Shu, S. A. Sheardown, C. Brown, R. P. Owen, S. Zhang, R. A. Castro et al., "Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action,” J Clin Invest, vol 117,May 2007, pp. 1422-1431.
[17] B. Chowbay, S. Zhou, and E. J. Lee, "An interethnic comparison of polymorphisms of the genes encoding drug-metabolizing enzymes and drug transporters: experience in Singapore,” Drug Metab Rev, vol. 37, 2005, pp. 327-378.
[18] G. Umamaheswaran, R. G. Praveen, A. S. Arunkumar, A. K. Das, D. G. Shewade, and C. Adithan C, "Genetic analysis of OCT1 gene polymorphisms in an Indian population,” Indian J Hum Genet, vol. 17, Sep. 2011, pp. 164-168.
[19] M. L. Becker, L. E. Visser, R. H. van Shaik, A. Hofman, A. G. Uitterlinden, and B. H. Stricker, "OCT1 polymorphism is associated with response and survival time in anti-Parkinsonian drug users,” Neurogenetics, vol. 12, Feb. 2011, pp. 79-82.
[20] Y. Ohishi, M. Nakamuta, N. Ishikawa, O. Saitoh, H. Nakamura, Y. Aiba et al., "Genetic polymorphisms of OCT-1 confer susceptibility to severe progression of primary biliary cirrhosis in Japanese patients,” J Gastroenterol, vol. 49, Apr. 2013 , pp. 332-342.
[21] J. W. Langston, P. Ballard, J. W. Tetrud, and I. Irwin, "Chronic parkinsonism in humans due to a product of meperidine-analog synthesis,” Science, vol. 219, Feb. 1983, pp. 979-980.
[22] M. C. Yang, A. J. McLean, and D. G. Le Couteur, "Cell membrane transport of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahy-dropyridine (MPTP) in the liver and systemic bioavailability,” Biochem Biophys Res Commun, vol. 289, Nov. 2001, pp. 130-136.
[23] B. J. Hardy, B. Seguin, F. Goodsaid, G. Jimenez-Sanchez, P. A. Singer, and A. S. Daar, "The next steps for genomic medicine: challenges and opportunities for the developing world,”Nat Rev Genet, vol. 9, Oct. 2008, pp. S23-S27.
[24] M. Benjeddou, "Solute carrier transporters: Pharmacogenomics research opportunities in Africa,” Afr. J. Biotechnol, vol. 9, Dec. 2010, pp. 9191-9195.
[25] A. B. Lane, H. Soodyall, S. Arndt, M. Ratshikhopha, E. Jonker, C. Freeman et al.,2002 "Genetic substructure in South African Bantu-speakers: Evidence from autosomal DNA and Y-chromosome studies,” Am J Phys Anthropol, vol. 119,Oct. 2002, pp. 175-185.
[26] G. Berniell-Lee, F. Calafell, E. Bosch, E. Heyer, L. Sica, P. Mouguiama-Daouda et al. "Genetic and demographic implications of the Bantu expansion: insights from human paternal lineages,” Mol Biol Evol,vol. 26, Jul. 2009, pp. 1581-1589.
[27] S. A. Tishkoff, F. A. Reed, F. R. Friedlaender, C. Ehret, A. Ranciaro, A. Froment et al., "The genetic and history of Africans and African Americans,” Science, vol. 324, May 2009, pp. 1035-1044.
[28] Encyclopaedia Brittanica, "Zulu,” Encyclopedia Brittanica Online, Encyclopedia Britannica Inc. Online 03 December 2013. http://www.britannica.com/EBchecked/topic/658352/Zulu.
[29] A. Takeuchi, H. Motohashi, M. Okuda, and K. Inui,"Decreased function of genetic variants, Pro283Leu and Arg287Gly, in human organic cation transporter hOCT1. Drug Metab,”Pharmacokinet, vol.18, 2003, pp. 409-412.
[30] O. Ikediobi, B. Aouizerat, Y. Xiao, M. Gandhi, S. Gebhardt, and L. Warnich, "Analysis of pharmacogenetic traits in two distinct South African populations,” Hum Genomics, vol. 5, May 2011, pp. 265-282.
[31] L. Warnich, B. I. Drögemöller, M. S. Pepper, C. Dandra C, and G. E. Wright, "Pharmacogenomic research in South Africa: lessons and future opportunities in the rainbow nation,” Curr Pharmacogenomics Person Med, vol. 9, Sep. 2011, pp. 191-207.
[32] A. T. Nies, H. Koepsell, S. Winter, O. Burk, K. Klein, R. Kerb et al., "Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver,” Hepatology, vol. 50, Oct. 2009, pp. 1227-1240.
[33] N. Leat, M. Benjeddou, and S. Davison, "Nine –locus Y-chromosome STR profiling of Caucasian and Xhosa populations from Cape Town, South Africa,” Forensic Sci Int, vol. 144, Aug. 2004, pp. 73-75.
[34] R. Peakall and P. E. Smouse, "GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research,’ Mol Ecol Notes, vol. 6, Mar. 2006, 288-295.
[35] Y. Y. Shi and L. He, "SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci,” Cell Res, vol. 15, Feb. 2005, pp. 97-98.
[36] Z. Li, Z. Zhang, Z. He, W. Tang, T. Li, Z. Zeng et al. "A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn),” Cell Res, vol, 19, Apr. 2009, pp. 519-523.
[37] M. L. Becker, L. E. Visser, R. H. van Shaik, A. Hofman, A. G. Uitterlinden, and B. H. Stricker, "Interaction between polymorphisms in the OCT1 and MATE1 transporter and metformin response,” Pharmacogenet Genomics, vol. 20, Jan. 2010, pp. 38-44.
[38] M. A. Johnson, K. H. Moore, G. J. Yuen, A. Bye, and G. E. Pakes,1999 "Clinical pharmacokinetics of lamivudine,” Clin Pharmacokinet, vol. 36,Jan 1999, pp. 41-66.
[39] M. K. Choi and I. S. Song, "Genetic variants of organic cation transport 1 (OCT1) and OCT2 significantly reduce lamivudine uptake,” Biopharm. Drug Dispos, vol. 33, Apr. 2012, pp. 170-178.
[40] Y. Shu, C. Brown, R. A. Castro, R. J. Shi, E. T. Lin, R. P. Owen et al., "Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics,” Clin. Pharmacol Ther, vol. 83, Feb. 2008, pp. 273-280.
[41] D.C. Crawford and D.A. Nickerson, 2005 "Definition and clinical importance of haplotypes,” Annu Rev Med, vol. 56, July 2005, pp. 303-320.