High Directivity and Gain Enhancement for Small Planar Dipole Antenna at 11 GHz Using Symmetrical Pyramidal Block Based On Epsilon Negative Medium
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
High Directivity and Gain Enhancement for Small Planar Dipole Antenna at 11 GHz Using Symmetrical Pyramidal Block Based On Epsilon Negative Medium

Authors: V. Kesornpatumanun, P. Boonek, W. Silabut, N. Homsup, W. Kuhirun

Abstract:

This paper increases directivity and gain of Small Planar Dipole Antenna (SPDA) by using Symmetrical Pyramidal Block (SPB) which operates in X band at 11 GHz. The SPB consists four sides; each of which is metamaterial with Epsilon Negative Medium (ENG) and Epsilon Near-Zero (ENZ). The results simulated using the High Frequency Structure Simulator (HFSS) show that the SPB is capable of enhancing directivity and gain for the SPDA with maximum gain of 2.46 dB. The reflection coefficient is -13.7037 dB with narrow beam width.

Keywords: Small Planar Dipole Antenna, Symmetrical Pyramidal Block, metamaterials, Epsilon Near-Zero, Epsilon Negative Medium.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093960

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408

References:


[1] Yang Hao, Raj Mittra, FDTD Modeling of Metamaterials Theory and Applications, 2009 Artech House, Inc.Canton Street,Norwood, MA 02062
[2] Shridhar E. Mendhe1 & Yogeshwar Prasad Kostaz, "Metamaterial Properties and Applications”, International Journal of Information Technology and Knowledge Management January-June 2011, Volume 4, No. 1, pp. 85-89
[3] F.Capolino, ―Theory and phenomena of metamaterials, CRC Press, 2009.
[4] Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, ― "High-impedance electromagnetic surfaces with a forbidden frequency band”, IEEE Trans. Microwave Theory Technol., 47, 2059-2074, Nov. 1999.
[5] R.F.J. Broas, D.F. Sievenpiper, and E. Yablonovitch, ― "A high-impedance ground plane applied to a cellphone handset geometry”, IEEE Trans. Microw.Theory Tech., 49(7), 1262-1265, July 2001.
[6] I. Gallina, A. DellaVilla, V. Galdi, V. Pierro, F. Capolino, S. Enoch, G. Tayeb, and G. Gerini, ― "Aperiodictiling- based mushroom-type high impedance surface”, IEEE Antennas Wireless Propagat. Lett.,7, 54-57,2008.
[7] J.B. Pendry, A.J. Holden, W.J. Stewart and I. Youngs, ― "Extremely low frequency plasmons in metallic mesostructures” Physical Review Letters, Vol. 76(25), pages 4773–76, 1996.
[8] X. Chen, T. Grzegorczyk, B. Wu, J. Pacheco, J. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials”, Physical Review E, Vol. 70, pp. 016608.1–016608.7, 2004.
[9] D. Smith, D. Vier, Th. Koschny, C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials”, Physical Review E, Vol. 71, pp. 036617.1–036617.11, 2005.
[10] Aycan Erentok, Paul L. Luljak, Richard W. Ziolkowski, "Characterization of a Volumetric Metamaterial Realization of an Artificial Magnetic Conductor for Antenna Applications”, ieee transactions on antennas and propagation, vol. 53, no. 1, january 2005.
[11] Nidal Abutahoun, Mohamed Ouda, "A Crescent Shaped Split Ring Resonator to Form a New Metamatrial”, International Journal of Engineering and Technology Volume 2 No. 10, October, 2012.