Molecular Analysis of Somaclonal Variation in Tissue Culture Derived Bananas Using MSAP and SSR Markers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Molecular Analysis of Somaclonal Variation in Tissue Culture Derived Bananas Using MSAP and SSR Markers

Authors: Emma K. Sales, Nilda G. Butardo

Abstract:

The project was undertaken to determine the effects of modified tissue culture protocols e.g. age of culture and hormone levels (2,4-D) in generating somaclonal variation. Moreover, the utility of molecular markers (SSR and MSAP) in sorting off types/somaclones were investigated.

Results show that somaclonal variation is in effect due to prolonged subculture and high 2,4-D concentration. The resultant variation was observed to be due to high level of methylation events specifically cytosine methylation either at the internal or external cytosine and was identified by methylation sensitive amplification polymorphism (MSAP).Simple sequence repeats (SSR) on the other hand, was able to associate a marker to a trait of interest.

These therefore, show that molecular markers can be an important tool in sorting out variation/mutants at an early stage.

Keywords: Methylation, MSAP, somaclones, SSR, subculture, 2, 4-D.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093518

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651

References:


[1] Cullis, C.A. 2005. Mechanisms and control of rapid genomes changes in flax. Annals of Botany 95:201-
[2] Hwang, S.C. and Tang, C.Y. 1995. Somaclonal Variation and its use in Taiwan. (Paper presented to MARDI. International Banana Workshop: New frontiers in Resistance Breeding for Nematodes Fusarium and Sigatoka. Serdang, Malaysia 2-5 Oct.1995)
[3] Reuveni, O., Y. Israeli. 1990. Measures to reduce somaclonal variation in in vitro propagated bananas. ActaHorticulturae. 275:307-313.
[4] Vuylsteke, D., Swennen, R. and De Langhe, E. 1991.Somaclonal Variations in Plantains (Musa spp., AAb group) derived from Shoot-tip Culture. Fruits: 46 (4): 429-439.
[5] Daniells, J.W. and Smith, M.K. 1993. Somatic mutation of bananas - their stability and potential. p.162-171. In: R.V. Valmayor, S.C. Hwang, R. Ploetz, S.W. Lee and N.V. Rao (eds.), Proceedings International Symposium on Recent Developments in Banana Cultivation Technology. INIBAP/ASPNET, Los Banos, Philippines.
[6] Israeli, Y., Lahav, E. and Reuveni, O. 1995. In vitro Culture of Bananas. In: Bananas and Plantains. S. Gowen. Lomndon, Chapman and Hall.Pp.147-178.
[7] Smith, M.K. 1998. A Review of Factors Influencing the Genetic Stability of Micropropagated Bananas. Fruits 43 (4):219-223.
[8] Scowcroft, W.R., S.A. Ryan, R.I.S. Brettel and P.J. Larkin. 1985. Biotechnology in International Agricultural Research, IRRI, Manila. Pp:99-109.
[9] Kaeppler, S.M., H. Kaeppler, Y. Rhee. 2000:Epigenetic aspects of somaclonal variation in plants. Plant Mol Bio Rep 43:179-188.
[10] Lukens, L.N., S. Zhan. 2007: The plant genome’s methylation status and response to stress:implications for plant improvement. CurrOpin Plant Biol 10:317-322.
[11] Jaligot, E., A. Rival, T. Buele, S. Dussert, J.L. Verdeil. 2000:Somaclonal variation in oil palm (ElaeisguineensisJacq.):the DNA methylation hypothesis. Plant Cell Rep,19:684-690.
[12] Brown, P.T.H., E. Gobel, H. Lorz. 1991:RFLP analysis of Zea mays callus culture and their regenerated plants. TheorAppl Genet, 81:227-232.
[13] Kaeppler, S.M., and R.L. Phillips. 1993. DNA methylation and Tissue Culture-Induced Variation in Plants. In Vitro Cell Dev. Biol 29P:125-130.
[14] Peraza-Echeverria, S.P., VAH Valencia, and A.J. Kay.2001: Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP). Plant Science. Vol. 161, No. 2:359-367
[15] Sahjiram, L. J. R. Soneji and K.T. Bollama, 2003. In-vitro Cellular & Dev. Biology. Plant. 39 (6) pp 551-556.
[16] Schellenbaum. P., V. Mohler, G. Wenzel and B. Walter. 2008.Variation in DNA methylation patterns of grapevine somaclones (Vitisvinifera L.). BMC Plant Biology 2008,8:78.
[17] Fraga, M.F., M.L. Centeno, A.E. Valdes, P. Moncalean, B. Fernandez, M.J. Canal and R. Rodrigeuz. 2000. Genomic DNA methylation and polyamines titer as key processes in plant ageing: applications for clonal multiplication of mature Pinusradiata trees.In Applications of Biotechnology to Forest Genetics. Eds. S. Espinel and E. Ritter, Neiker, Victoria, pp 495-506.
[18] Crouch, J.H., H.K. Crouch, H. Constandt, A. Van Gysel, P. Breyne, M.V. Montager, R. L. Jarret, and R. Ortiz. 1999. Comparison of PCR based molecular marker analysis of Musa breeding populations. Mol. Breeding 5: 233-244.
[19] Crouch, J.H., H.K. Crouch, R. Ortiz and R.L. Jarret. 1997. Microsatellite markers for molecular breeding of Musa.InfoMusa 6:5-6.
[20] Oriero, C. E., Odunala, O. A., Lokko, Y. &Ingelbrecht, I. 2006. African J of Biotech. 5(2): 126-128.
[21] Pessoa-Filho, M.A.C., A. Belo, A.A.N. Alcochete, P.H.N. Rangel, M.E. Ferreira. 2007. A set of multiplex panels of microsatellite markers for rapid molecular characterization of rice accessions. BMC Plant Biology, 7:23.
[22] Hayden, M.J., T.M. Nguyen, A. Waterman, G.L. McMichael, K.J. Chalmers. 2007. Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Molecular Breeding 21:271-281.
[23] This, P. A. Jung, P. Boccacci, J. Borrego, R. Bott, L. Costantini, M. Crespan, G.S. Dangl, C. Eisenheld, F. Ferreiza-Monteiro, S. Grando, J. Ibanez, Lacombe, V. Laucon, R. Magalhaes, C.P.Meredith, N. Milani, E. Peterlunger, F. Regner, L. Zulini, E. Maul. 2004: Development of standard set of microsatellite reference alleles for identification of grape cultivars. TheorAppl Genet 2004.109:1148-1158. PubMed.
[24] Zhang, D., S. Mischke, R. Goenaga, A.A. Hemeida, S’A. 2006. Accuracy and reliability of high-through put microsatellite genotyping for cacao clone identification, Crop Sci 46:2084-2092.
[25] Hwang, S.C. and Ko, W.H.1990. Selection of Improved Cavendish Banana Mutants Resistant to Race-4 of FusariumoxysporumF.sp.cubense.Acta Horticulture 275:417-423.
[26] Murashige, T., Skoog, F.A. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. PhysiologiaPlantarum, v.15, p.473-497, 1962.
[27] Gawel, N. and Jarret, L. 1991. A Modified CTAB DNA Extraction Procedure for Musa and Ipomea.PlantBiol.Mol.Reports. 9(3) 262-266
[28] Rohlf, F.J. 1997, NTSYSpc:numerical taxonomy and multivariate analysis system, Version 2.02. Setauket (New York):Exeter Publishing.
[29] Salmon, A., J. Clotault, E. Jenczewski, V. Chable, M. Manzaneres-Daulex. 2008. Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci 174:61-70.
[30] Bednarek, P.T., Orlowska, R., Koebner, R.M.D., Zimny, J.:Quantification of the tissue-culture induced variation in barley (Hordeumvulgare L.) BMC Plant Biol 2007, 7:10.
[31] Li J., H. Yan, K. Wang, W. Tan, X. Zhou. 2007. "Hairpin fluorescence DNA probe for real-time monitoring of DNA methylation”. Anal. Chem. 79(3):1050-1056.doi:10.1021/ac061694i. (http://dx.doi.org/10.1021%2Fac061694i). PMID 17263334 (//www.ncbi.nlm.nih.gov/pubmed/17263334).
[32] Brown, P.T.H., Kyozuka, J., Sukekiyo, Y., Kimura, Y., shimamoto, K., Lorz, H.1990. Molecular Change in Protoplast-derived rice plants. Mol Gen Genet. 223:324-328.
[33] Gou, W.L., Wu, R., Zhang, Y.F., Liu, X.M., Wang, H.Y., Gong, L., Zhang, Z.H., Liu, P. 1997. Tissue-culture-induced locus specific alteration in DNA methylation and its correlation with genetic variation in CodonopsisLanceolata Beth. et. Hook.f. Plant Cell Tiss Org Cult, 90:1297-1307.