Effect of Climate Change on Runoff in the Upper Mun River Basin, Thailand
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Effect of Climate Change on Runoff in the Upper Mun River Basin, Thailand

Authors: Preeyaphorn Kosa, Thanutch Sukwimolseree

Abstract:

The climate change is a main parameter which affects the element of hydrological cycle especially runoff. Then, the purpose of this study is to determine the impact of the climate change on surface runoff using land use map on 2008 and daily weather data during January 1, 1979 to September 30, 2010 for SWAT model. SWAT continuously simulate time model and operates on a daily time step at basin scale. The results present that the effect of temperature change cannot be clearly presented on the change of runoff while the rainfall, relative humidity and evaporation are the parameters for the considering of runoff change. If there are the increasing of rainfall and relative humidity, there is also the increasing of runoff. On the other hand, if there is the increasing of evaporation, there is the decreasing of runoff.

Keywords: Climate, Runoff, SWAT, Upper Mun River Basin

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1093267

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302

References:


[1] D. P. Lettenmaier, A. W Wood, R. N. Palmer, E. F. Wood and E. Z. Stakhiv, "Water resources implications of global warming, pp. A U.S. regional perspective” Clim. Change., vol. 43, pp. 537–579, November 1999.
[2] V. K. Arora and G. J. Boer, "Effects of simulated climate change on the hydrology of major river basins” J. Geophys. Res., vol. 106, pp. 3335–3348, February 2001.
[3] B. Nijssen, G. M. O’Donnell, D. P. Lettenmaier, D. Lohmann and E. F. Wood, "Predicting the discharge of global river” J. Climate., vol. 14(15), pp. 3307–3323, August 2001.
[4] T. Oki, Y. Agata, S. Kanae, T. Saruhashi, D.W. Yang and K. Musiake, "Global assessment of current water resources using total runoff integrating pathways” J. SciHydrol., vol. 46, pp. 983–995, December 2001.
[5] P. Doll, F. Kaspar and B. Lehner, "A global hydrological model for derving water availability indicatorss, pp. model turning and validation” J. Hydrol., vol. 270(1-2), pp. 105–134, January 2003.
[6] S. Jurgen X, K. C. Abbaspour, R. Srinivasan and H. Yang, "Estimation of freashwater availability in the West African sub-continent using the SWAT hydrologic model” J. Hydrol., vol. 352, pp. 30–49, April 2008.
[7] J. S. Risbey and D. Entekhabi, "Observed Sacramento Basin streamflow response to precipitation and temperature changes and its relevance to climate impacts studies” J. Hydrol., vol. 184, pp. 209–223, October 1996.
[8] D. N. Yates and K. M. Strzepek, "Modeling the Nile basin under climatic change” J. Hydrol. Eng., vol. 3, pp. 98–108, March 1998.
[9] A. Sankarasubramanian, R. M. Vogel and J. F. Limbrunner, "Climate elasticity of streamflow in the United States” Water Resour.Res., vol. 37, pp. 1771–1781, June 2001.
[10] G. Fu, S. Chen, C. Liu and D. Shepard, "Hydro-climatic trends of the Yellow River Basin for the last 50 years” Clim. Change., vol. 65, pp. 149–178, July 2004.
[11] R. L. Wilby, L. E. Hay, W. J. Gutowski, R. W. Arritt, E. S. Takle, Z. Pan, G. H. Leavesley and M. P. Clark, "Hydrological responses to dynamically and statistically downscaled climate model output” Geophys. Res. Lett., vol. 27, pp. 1199–1202, April 2000.
[12] J. G. Arnold, R. Srinivasan, R. S. Muttiah and J. R. Williams, "Large area hydrologic modeling and assessment. Part I, pp. Model development” J. Am. Water Resour. Assoc., vol. 34, pp. 73–89, February 1998.
[13] C. H. B. Priestly and R. J. Taylor, "On the assessment of surface heat flux and evaporation using large-scale measurements” Mon. Weather Rev., vol. 100, pp. 81–92, February 1972.
[14] G. H. Hargreaves, "Moisture availability and crop production” Trans. ASAE., vol 18, pp. 980–984, August 1975.
[15] R. G. Allen, M. E.Jensen, J. L. Wright and R. D. Burman, "Operational estimates of reference evapotranspiration” Agron. J., vol 81, pp. 650–662, July 1989.
[16] J. R. Williams, C. A. Jones and P. T. Dyke, "A modeling approach to determining the relationship between erosion and soil productivity” Trans. ASAE., vol. 27(1), pp. 129–144, January 1984.
[17] J. R. Williams, A. D. Nicks and J. G. Arnold, "Simulator for water resources in rural basins” J. Hydraul. Eng., vol. 111, pp. 970–986, June 1985.
[18] R. A. Leonard, W. G. Knisel and D. A. Still, "Groundwater loading effects on agricultural management systems” Trans. ASAE., vol. 30, pp. 1403–1428, August 1987.
[19] J. G. Arnold and P. M. Allen, "Estimating hydrologic budgets for three Illinois watersheds” J. Hydrol., vol. 176, pp. 57–77, March 1996.
[20] K.C. Abbaspour, J. Yang, I. Maximov, R. Siber, K. Bogner, J. mieleitner, J. Zobrist, and R. Srinivasan, "Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT” J. Hydrol, vol 333, pp. 413–430, January 2007.
[21] J. Schuol, K.C. Abbaspour, R. Srinivasan and H. Yang, "Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model” J. Hydrol., vol. 352, pp. 30–49, April 2008.
[22] M. E. Coffey, S. R. Workman, J. L. Taraba and A. W. Fogle, "Statistical procedures for evaluating daily and monthly hydrologic model predictions” Trans. ASAE, vol. 47(1), pp. 59–68, January 2004.
[23] B. L. Benham, C. Baffaut, R. W. Zeckoski, K. R. Mankin, Y. A. Pachepsky, A. M. Sadeghi, K. M. Brannan, M. L. Soupir, and M. J. Habersack, "Modeling Bacteria fate and transport in watershed model to support TMDLs” Trans. ASABE., vol. 49, pp. 987–1002, July 2006.
[24] A. El-Nasr, J. G. Arnold, J. Feyen and J. Berlamont, "Modelling the hydrology of a catchment using a distributed and a semi-distributed model” Hydrolog. Process., vol. 19, pp. 573–587, February 2005.
[25] J. G. Arnold, R. S. Muttiah, R. Srinivasan and P. M. Allen, "Regional estimation of base floe and groundwater recharge in the upper Mississippi basin” J. Hydrol., vol. 227, pp. 21–40, January 2000.
[26] M. Cerucci and J. M. Conrad, "The use of binary optimization and hydrologic models to form riparian buffers” J. Am. Water Resour. Assoc., vol. 39, pp. 1167–1180, October 2003.
[27] V. Chaplot, A. Saleh, D. B. Jaynes, and J. Arnold, "Predicting water, sediment, and NO3-N loads under scenarios of land-use and management practices in a flat watershed” Water Air Soil Pollut., vol. 154, pp. 271–293, May 2004.
[28] T. W. Chu and A. Shirmohammadi, "Evaluation of the SWAT model’s hydrology component in the Piedmont physiographic region of Maryland” Trans. ASAE., vol. 47, pp. 1057–1073, July 2004.
[29] M. W. Gitau, T. L. Veith and W. J. Gburek, "Farm-level optimization of BMP placement for cost-effective pollution reduction” Trans. ASAE., vol. 47(6), pp. 1923–1931, August 2004.
[30] M. Jha, J. G. Arnold, P. W. Gassman, F. Giorgi and R. Gu, "Climate change sensitivity assessment on upper Mississippi river basin steamflows using SWAT” J. Am. Water Resour. Assoc., vol. 42(4), pp. 997–1015, August 2006.
[31] L. Kalin and M. H. Hantush, "Hydrologic modeling of an eastern Pennsylvania watershed with NEXRAD and rain gauge data” J. Hydrol. Eng., vol. 11, pp. 555–569, November 2006.