Design and Implementation of Quantum Cellular Automata Based Novel Adder Circuits
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Design and Implementation of Quantum Cellular Automata Based Novel Adder Circuits

Authors: Santanu Santra, Utpal Roy

Abstract:

The most important mathematical operation for any computing system is addition. An efficient adder can be of greater assistance in designing of any arithmetic circuits. Quantum-dot Cellular Automata (QCA) is a promising nanotechnology to create electronic circuits for computing devices and suitable candidate for next generation of computing systems. The article presents a modest approach to implement a novel XOR gate. The gate is simple in structure and powerful in terms of implementing digital circuits. By applying the XOR gate, the hardware requirement for a QCA circuit can be decrease and circuits can be simpler in level, clock phase and cell count. In order to verify the functionality of the proposed device some implementation of Half Adder (HA) and Full Adder (FA) is checked by means of computer simulations using QCA-Designer tool. Simulation results and physical relations confirm its usefulness in implementing every digital circuit.

Keywords: Clock, Computing system, Majority gate, QCA, QCA Designer.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091118

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4399

References:


[1] A. Chaudhary, D. Z. Chen, X. S. Hu, M. T. Niemier, R. Ravichandran, and K. Whitton, IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, Vol. 26, No. 11, PP-1978-1991, 2007.
[2] S. Timarchi, K. Navi, IEEE Trans. On Instrumentation and Measurement, Vol. 58 Issue: 9, PP-2959-2968 2009.
[3] A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, G. L. Snider, Science Vol. 277 No. 5328 PP- 928-930, 1997.
[4] P. Tougaw, C. Lent, Journal of Applied Physics Vol.75 No.3 PP. 1818 – 1825. 1994.
[5] C. Lent, P. Tougaw, W. Porod, and G. Bernstein, Nanotechnology Vol. 4 PP-49-57, 1993.
[6] J D Jackson, Jhon Wiley and Sons, 1999.
[7] R. Zhang, K. Walus, Wei Wang and G. Jullien, IEEE Trans. on Nanotechnology, Vol. 3, No.4, PP-443-450, 2004.
[8] A. Orlov, Appl. Phys. Lett., Vol. 74, No. 19, PP-2875-2877, 1999.
[9] I. Amlani, Science, vol. 284, pp. 289-291, 1999.
[10] M. Nakahara, R. Rahimi, A. Sai, World Scientific, 2007.
[11] W Wang, K Walus, G A Jullien, In proceedings of IEEE conference on Nanotechnology, PP 461-464, 2003.
[12] A. Chaudhary, in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, PP. 565-571, 2005.
[13] S. Frost, T. Dysart, P. M. Kogge, and C. S. Lent, in Proc. 4th IEEE Conf. Nanotechnology, PP-171-173, 2004.
[14] C. S. Lent and B. Isaksen, IEEE Trans. Electron Devices, Vol. 50, No. 9, PP-1890-1896, Sep. 2003.
[15] M. Mustafa, M R Beigh, Indian Journal of pure & applied physics, Vol. 51 PP-60-66, 2013.
[16] M R Beigh, M. Mustafa, F. Ahmad, Circuits and Systems Vol.4 PP 147-156, 2013.
[17] H. S. Jagarlamudi, M. Saha, P K Jagarlamudi, World Academy of Science, Engineering and Technology, Vol. 60 PP 486-490, 2011.
[18] M. Momenzadeh, J. Huang, M. Tahoori, and F. Lombardi, IEEE Trans. Computer-Aided Design Integr. Circuits Syst., Vol. 24, No. 12, PP-1881-1893, Dec. 2005.
[19] A Vetteth, K Walus, G A Jullien, In Proceedings of IEEE Emerging Telecommunication Technology, 2002.
[20] R Zhang, K Walus, W Wang, In proceedings of IEEE International Symp. Circuits System, Vol. 3 PP 2522-2526, 2005.
[21] H Cho, PhD dissertation, Faculty of the Graduate School, University of Texas, Austin, 2006.
[22] K Kim, K Wu, R Karri, IEEE Tractions on CAD Integr. Circuits Systems, Vol. 26, PP 176-183, 2007.
[23] K. Walus, T. J. Dysart, G.A. Jullien and A. Budiman, IEEE Transactions on Nanotechnology, Vol. 3,No.01, PP. 26-31, 2004.