A Novel Method for Non-Invasive Diagnosis of Hepatitis C Virus Using Electromagnetic Signal Detection: A Multicenter International Study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
A Novel Method for Non-Invasive Diagnosis of Hepatitis C Virus Using Electromagnetic Signal Detection: A Multicenter International Study

Authors: Gamal Shiha, Waleed Samir, Zahid Azam, Premashis Kar, Saeed Hamid, Shiv Sarin

Abstract:

A simple, rapid and non-invasive electromagnetic sensor (C-FAST device) was- patented; for diagnosis of HCV RNA. Aim: To test the validity of the device compared to standard HCV PCR. Subjects and Methods: The first phase was done as pilot in Egypt on 79 participants; the second phase was done in five centers: one center from Egypt, two centers from Pakistan and two centers from India (800, 92 and 113 subjects respectively). The third phase was done nationally as multicenter study on (1600) participants for ensuring its representativeness. Results: When compared to PCR technique, C-FAST device revealed sensitivity 95% to 100%, specificity 95.5% to 100%, PPV 89.5% to 100%, NPV 95% to 100% and positive likelihood ratios 21.8% to 38.5%. Conclusion: It is practical evidence that HCV nucleotides emit electromagnetic signals that can be used for its identification. As compared to PCR, C-FAST is an accurate, valid and non-invasive device.

Keywords: C-FAST- a valid and reliable device, Distant cellular interaction, Electromagnetic signal detection, Non-invasive diagnosis of HCV.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1090448

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17967

References:


[1] World Health Organization, Weekly Epidemiology Record, 1999; 74:421-428.
[2] W. Aman , S. Mousa , G. Shiha , S. A. Mousa , Current status and future directions in the management of chronic hepatitis C. Virology Journal; 9:57, 2012.
[3] A. Attallah, A. M. Attallah , H. Ismail, G. E. Shiha., M. Abo-Dobara, R. Elsherbiny, I. Eldesouky, Immunochemical Identification and partial characterization of a native hepatitis C viral non- structural 4 antigen in sera of HCV infected patients. Clinical Chemica Acta; 388(1-2):115-22. 2007.
[4] M. Albeldawi, E. Ruiz-Rodriguez, W. D. Carey, Hepatitis C virus: Prevention, screening, and interpretation of assays. J. Cleve Clin Med; 77 (9):616-26, 2010.
[5] H. H. Kessler, B. I. Santner, F. Umlauft, M. Kronawetter, D. Stünzner, K. Pierer, E. Stelzl, K. Grünewald, E. Marth, Quantitation and genotyping of hepatitis C virus RNA in sera of hemodialysis and AIDS patients. Clin Diagn Virol; 5(1):73-78, 1996.
[6] E. Orito, M. Mizokami, K. Suzuki, K. Ohba, T. Ohno, M. Mori, K. Hayashi, K. Kato, S. Iino, J.Y. Lau, Loss of serum HCV RNA at week 4 of interferon-alpha therapy is associated with more favorable long-term response in patients with chronic hepatitis C. J Med Virol; 46 (2):109-115, 1995.
[7] M. Cifra, J. Z. Fields, A. Farhadi. Electromagnetic cellular interactions. Prog Biophys Mol Biol; 5; 105(3):223-46, 2011.
[8] S. Kiontke, Natural Radiation and its effects on biological systems, Naturheilpraxis mit Naturmedizin, Pflaum Verlag, 2000.
[9] W. R. Adey, Biological effects of EMF. J. Cell Biochem; 51, 410-416, 1993.
[10] I. Ćosić, M. Pavlovic, V. Vojisavljević, Prediction of hot spots in Il-2 based on information spectrum characterictics of growth regaling factors, Biochemie; 71, 333-342, 1989.
[11] J. Zhang, X. Zhang. Communication between osteoblasts stimulated by electromagnetic fields. Chinese Science Bulletin; 52 (1), 98-100, 2007.
[12] Ho, MW, Popp, FA, Warnke, U. (Eds.), Bioelectrodynamics and Biocommunication. World Scientific, New Jersey, London, Hong Kong, 1994.
[13] I. Cosic, The Resonant Recognition Model of Macromolecular Bioactivity: Theory and Applications, Birkhauser Verlag, Basel, Switzerland, 1997.
[14] N. Nwankwo, H. Seker, A signal processing-based bioinformatics approach to assessing drug resistance: human immunodeficiency virus as a case study. Conf Proc IEEE Eng Med Biol Soc; 1836-1839, 2010.
[15] I. Cosic. Macromolecular bioactivity: Is it resonant interaction between macromolecules? Theory and applications. IEEE Trans Biomed Eng; 41: 1101- 1114, 1994.
[16] J. Preto, E. Floriani, I. Nardecchia, P. Ferrier and M. Pettini, Experimental assessment of the contribution of electrodynamic interactions to long-distance recruitment of biomolecular partners: Theoretical basis. Phys Rev E Stat Nonlin Soft Matter Phys; 85(4-1):041904, 2012.
[17] D. Ntarlagiannis, E. A. Atekwana, Eric, A. Hill, and Yuri Gorby, GeoPhys. Res. Lett. 34, L17305, 2007.
[18] M.Y. El-Naggar, Y.A. Gorby, W. Xia, and K.H. Nealson,Biophys. J. Biophys, L. Letts. 10, 2008.
[19] M.Y. El-Naggar, G. Wangerb, K.M. Leungc, T.D. Yuzvinskya, G. Southame, J. Yangc, W.M. Laud, K.H. Nealsonband Y.A. Gorbyb PNAS; 107, 18127, 2010.
[20] O. Kucera, M Cifra, Pokorný, J. Technical aspects of measurement of cellular electromagnetic activity. European Biophysics Journal; 39 (10), 1465-1470, 2010.
[21] A. Amien, Fast series (field advanced screening tool) WO 2011116782 A1. Patent PCT/EG/2010/0000044.
[22] S. K. Lwanga, S. S. Lemeshow, ample size determination in health studies, Geneva,World Health Organization, 1991.
[23] P. Ramachandran, A. Antoniou, and P. P. Vaidyanathan, "Identification and location of hot spots in proteins using the short-time discrete Fourier transform,” in Proc. 38th Asilomar Conf. Signals, Systems, Computers, Pacific Grove, CA, pp. 1656–1660, 2004.
[24] P. Ramachandran and A. Antoniou, "Identification and location of hot spots in proteins using digital filters,” IEEE Journal of selected topics in signal processing; Vol .2, No. 3, 2008.
[25] S. S. Sahu and G. Panda, Efficient Localization of Hot spots in Proteins Using A novel S-Transform Based Filtering Approach. IEEE/ACM Transations on Computational Biology and Boinfromatics, VOL.8, NO.5, 1235-1246, 2011.
[26] P. P. Vaidyanathan and B. J. Yoon, "The role of signal processing concepts in genomics and proteomics,” Journal of the Franklin Institute; vol. 341, pp. 111-135, 2004.
[27] P. Stoica, R. L. Moses, Introduction to Spectral Analysis, Prentice-Hall, pp. 24-26, 1997.
[28] T. Greenhalgh How to read a paper: papers that report diagnostic or screening tests.BMJ; 315: 540–543. 1997.
[29] D. G. Altman, J. M. Bland Diagnostic tests 2: predictive values. BMJ; 309: 102, 1994.
[30] J. J. Deeks, D. G. Altman, Sensitivity and specificity and their confidence intervals cannot exceed 100%. BMJ; 318: 193, 1999.
[31] D. G. Altman Inter-rater agreement in practical statistics for medical research. London, UK: Chapman and Hall; pp 403–409, 1996.
[32] J. M. Bland, D. G. Altman, Statistical methods for assessing agreement between two methods of clinical measurement. Lancet; 1: 307–310, 1986.
[33] A. Widom, J. Swain, Y. N. Srivastava, S. Sivasubramanian, Electromagnetic Signals from Bacterial DNA. Physics.gen-ph. 2012; arXiv; 1104, 3113v2.
[34] V. Vojisavljevic, E. Pirogova, I. Cosic. Investigation of the Mechanisms of Electromagnetic Field Interaction with Proteins. Conf Proc IEEE Eng Med Biol Soc; 7(1):7541-7544, 2005.
[35] G. Albrecht-Buehler, Cellular infrared detector appears to be contained in the centrosome. Cell motility and the cytoskeleton; 27(3), 262-271, 1994.
[36] C. Bailey, The Greek Atomists and Epicurus, Oxford 1928.
[37] Isaac Newton's. The mathematical principles of natural philosophy, 1729.
[38] G. Albrecht-Buehler, In defense of 'nonmolecular' cell biology. International Review of Cytology; (1)120, 191-241, 1990.
[39] A. Szent-Gyorgyi, Bioenergetics . New York: Academic Press 1957.
[40] T. J. Fagan Nomogram for Bayes’ theorem. New Engl J Med; 293:257, 1975.
[41] M.G. Ghany, D.B. Strader, D.L. Thomas, Seeff, B. Leondard, Diagnosis, Management and Treatment of Hepatitis C. Hepatology; 49 (4):1-40, 2009.
[42] D. Dieterich, The end of the beginning for hepatitis C treatment. Hepatology; 55 (3): 664–665, 2012.