Structural, Optical and Ferroelectric Properties of BaTiO3 Sintered at Different Temperatures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Structural, Optical and Ferroelectric Properties of BaTiO3 Sintered at Different Temperatures

Authors: Anurag Gaur, Neha Sharma

Abstract:

In this work, we have synthesized BaTiO3 via sol gel method by sintering at different temperatures (600, 700, 800, 900, 10000C) and studied their structural, optical and ferroelectric properties through X-ray diffraction (XRD), UV-Vis spectrophotometer and PE Loop Tracer. X-ray diffraction patterns of barium titanate samples show that the peaks of the diffractogram are successfully indexed with the tetragonal and cubic structure of BaTiO3. The Optical band gap calculated through UV Visible spectrophotometer varies from 4.37 to 3.80 eV for the samples sintered at 600 to 10000C, respectively. The particle size calculated through transmission electron microscopy varies from 20 to 40 nm for the samples sintered at 600 to 10000C, respectively. Moreover, it has been observed that the ferroelectricity increases as we increase the sintering temperature.

Keywords: Nanostructures, Ferroelectricity, Sol-gel method.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335936

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3693

References:


[1] N. Sasirekha, B. Rajesh, Yu-Wen Chen, Ind. Chem. Res. 47, 1868 (2008).
[2] T.K. Kundu, A Jana, P. Barik, Bull. Mater.Sci. 31, 3 (2008).
[3] T. Yogo, T. Yamamoto, W. Sakamoto, S. Hirano, J. Mater. Res. 19, 3290 (2004).
[4] L. Huang, Z. Chen, J.D. Wilson, S. Banerjee, R.D. Robinson, I.P. Herman, R. Laibowitz, S. O’Brien, J. Appl. Phys. 100, 034316 (2006).
[5] W.F. Zhang, Z. Yin, M.S. Zhang, Appl. Phys. A 70 (2000) 93-96.
[6] T. Takagahara, K. Takeda, Phys. Rev. B 46 (1992) 15578-15581.
[7] J. Yu, J. Sun, J. Chu, D. Tang, Appl. Phys. Lett. 77 (2000) 2807-2810.
[8] J. H. Herbert, Ceramic Dielectrics and Capacitors (Gordon and Breach, New York, 1985).
[9] H. G. Lee and H. G. Kim, J. Appl. Phys. 67, 2024 (1990).
[10] F. Zimmermann, M. Voigts, and C. Weil, J. Eur. Ceram. Soc. 21, 2019 (2001).
[11] K. Kinoshita and A. Yamaji, J. Appl. Phys. 47, 371 (1976).
[12] A. J. Bell, A. J. Moulson, and L. E. Cross, Ferroelectrics 54, 147 (1984).
[13] G. Arlt, D. Hennings, and G. De With, J. Appl. Phys. 58, 1619 (1985).
[14] K. Uchino, E. Sadanaga, and T. Hirose, J. Am. Ceram. Soc. 72, 1555 (1989).
[15] M. H. Frey and D. A. Payne, Phys. Rev. B 54, 3158 (1996).
[16] S. Wada, T. Suzuki, and T. Noma, J. Ceram. Soc. Jpn. 104, 383 (1996).
[17] D. McCauley, R. E. Newnham, and C. A. Randall, J. Am. Ceram. Soc. 81, 979 (1998).
[18] Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, Phys. Rev. B 70 024107 (2004).
[19] W. L. Zhong, Y. G. Wang, P. L. Zhang, and B. D. Qu, Phys. Rev. B 50, 698 (1994).
[20] S. Wada, H. Yasuno, T. Hoshina, S.-M. Nam, H. Kakemoto, and T. Tsurumi, Jpn. J. Appl. Phys., Part 1 42, 6188 (2003).
[21] S. Wada, A. Yazawa, T. Hoshina, Y. Kameshima, H. Kakemoto, T. Tsurumi, and Y. Kuroiwa, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1895 (2008).
[22] L. Qi, B.I. Lee, P. Badhekab, L.-Q. Wang, P. Gilmour, W.D. Samuels, G.J. Exarhos, Mater. Lett. 59 (2005) 5794.
[23] L. Qi, B.I. Lee, P. Badheka, D.-H. Yoon, W.D. Samuels, G.J. Exarhos, J. Eur. Ceram. Soc. 24 (2004) 3553.
[24] M.M. Lencka, R.E. Riman, Chem. Mater. 5 (1993) 61.
[25] C. Beck, W. Hartl, R. Hempelman, J. Mater. Res. 13 (1998) 3174.
[26] J. Wang, J. Fang, S.C. Ng, L.M. Gan, C.H. Chew, X. Wang, Z. Shen, J. Am. Ceram. Soc. 82 (1999) 873.
[27] Y. Kobayashi, A. Nishikata, T. Tanase, M. Konno, Sol–Gel. Sci. Technol. 29 (2004) 49.
[28] W. Li, et al, J. Alloys Comp. 482 (2009) 137–140.
[29] B.D. Cullity, Elements of X-Ray Diffractions, Addison-Wesley, Reading, MA, (1978).
[30] O. Harizanov, A. Harizanova, T. Ivanova, Mater. Sci. Eng. B 106 (2004) 191.
[31] S. Lee, T. Son, J. Yun, H. Kwon, G.L. Messing, B. Jun, B. Mater. Lett. 58 (2004) 2932.
[32] M.M. Lencka, R.E. Riman, Chem. Mater. 7 (1995) 18.
[33] J.C. Tauc, Amorphous and Liquid Semiconductor, Plenum Press, New York, 1974 (p.159).
[34] O. Harizanov, A. Harizanova, T. Ivanova, Mater. Sci. Eng. B 106 (2004) 191–195.
[35] R. Ashiri, A. Nemati, M.S. Ghamsari, H. Aadelkhani, J. Non-Cryst. Solids 355 (2009)2480–2484.
[36] R. Thomas, D.C. Dube, M.N. Kamalasanan, S. Chandra, Thin Solid Films 346 (1999) 212–225.
[37] H.X. Zhang, C.H. Kam, Y. Zhou, X.Q. Han, Y.L. Lam, Y.C. Chan, K. Pita, Mater. Chem. Phys. 63 (2000) 174–177.