Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence

Authors: H. Mazouz, A. Belghachi, F. Hadjaj

Abstract:

Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of GaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current

Keywords: GaAs solar cell, 1MeV electron irradiation, irradiation fluence.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1089589

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3814

References:


[1] P.A. Iles, Evolution of space solar cells, Solar Energy Materials & Solar Cells 68 (2001) 1-13.
[2] A. Klaver, Irradiation-induced degradation of amorphous silicon solar cells in space, Ph. D. thesis Delft University of Technology, with summary in Dutch, 2007.
[3] A. W. Bett, F. Dimroth, G. Stollwerck and O. V. Sulima, III-V compounds for solar cell applications,App.Phys;A69, 199-129 (1999).
[4] Priyanka Singh n, N. M. Ravindra, Temperature dependence of solar cell performance—an analysis, Solar Energy Materials & Solar Cells101 (2012)36–45.
[5] Martin A. Green, Keith E, Yoshihiro H, Wilhelm W and Ewan D, Solar cell efficiency tables (version 39) Prog. Photovolt: Res. Appl. 2012; 20:12–20.
[6] T.V. Torchynska and G.P. Polupan, III-V material solar cells for space application, Semiconductor Physics, Quantum Electronics & Optoelectronics. 2002. V. 5, N 1. P. 63-70.
[7] Sheng S. Li, R. Y. Loo, Deep-level defects and numerical simulation of radiation damage in GaAs solar cells, Solar Cells, 31 (1991) 349-377.
[8] N. de Angelis, J.C. Bourgoin, T. Takamoto, A. Khan and M. Yamaguchi, Solar cell degradation by electron irradiation. Comparison between Si, GaAs and GaInPcells,lar Energy Materials & Solar Cells 66 (2001) 495-500.
[9] Masafumi Yamaguchi, Radiation-resistant solar cells for space use, Solar Energy Materials & Solar Cells 68 (2001) 31-53.
[10] D. Schiavo, Modeling radiation effects on a triple jonction solar cell using silvaco atlas, Ph. D .U.S. Naval Academy, 2012.
[11] MMbarki, G C Sun and J C Bourgoin, Prediction of solar cell degradation in space from the electron–proton equivalence, Semicond. Sci. Technol. 19 (2004) 1081–1085.
[12] E. Rosencher, B. Vinter, Optoelectronique, Masson, Paris, 1998.
[13] R. Poerschke and O.Madelung, Data in science and technology, Semiconductors: Group IV elements and III-Vcompounds, Editor, Springer-Verlag, Berlin /Marburg, February 1991.
[14] S.M. Sze, Physics of semiconductor devices, 2nd Ed, New-York: John Wiley and Sons, 1981 .
[15] J. G. Werthen, G. F. Virshup, C. W. Ford, C. R. Lewis, and H. C. Hamaker, 21 % (one sun, air mass zero) 4 cm2 GaAs space solar cells, Appl. Phys. Lett., Vol. 48, No.1, 6 January 1986.
[16] Martin A. Green, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta, Solar cell efficiency tables (version 36), Prog. Photovolt: Res. Appl. 2010; 18:346–352.
[17] S. Michael, Novel technique for modeling Radiation effects in Solar cells utilizing SILVACO virtual wafer fabrication software, RADECS 2005 Proceedings.
[18] Robert Y. Loo, G. Sanjiv K, and Sheng S. LI, Radiation Damage and Annealing in GaAs Solar Cells, IEEE Transactions on electron devices ,Vol. 31, N° 2. February1990.
[19] B. Danilchenko, A. Budnyk, L. Shpinar, D. Poplavskyy, S.E. Zelensky, K. W. J. Barnham, N.J. Ekins-Daukes,1MeV electron irradiation influence on GaAs solar cell performance, Solar Energy Materials & Solar Cells 92 (2008) 1336– 1340.
[20] S. Makhamn, G. C. Sun and J. C. Bourgoin, Modelling of solar cell degradation in space, Solar Energy Materials &Solar Cells 94 (2010) 971–978.