WASET
	%0 Journal Article
	%A Miroslav Byrtus
	%D 2013
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 83, 2013
	%T Dynamic Analysis of Reduced Order Large Rotating Vibro-Impact Systems
	%U https://publications.waset.org/pdf/9996772
	%V 83
	%X Large rotating systems, especially gear drives and gearboxes, occur as parts of many mechanical devices transmitting the torque with relatively small loss of power. With the increased demand for high speed machinery, mathematical modeling and
dynamic analysis of gear drives gained importance. Mathematical description of such mechanical systems is a complex task evolving for several decades. In gear drive dynamic models, which include flexible shafts, bearings and gearing and use the finite elements, nonlinear effects due to gear mesh and bearings are usually ignored, for such models have large number of degrees of freedom (DOF) and it is computationally expensive to analyze nonlinear systems with large number of DOF. Therefore, these models are not suitable for simulation of nonlinear behavior with amplitude jumps in frequency response. The contribution uses a methodology of nonlinear large rotating system modeling which is based on degrees of freedom (DOF) number reduction using modal synthesis method (MSM).
The MSM enables significant DOF number reduction while keeping
the nonlinear behavior of the system in a specific frequency range.
Further, the MSM with DOF number reduction is suitable for
including detail models of nonlinear couplings (mainly gear and
bearing couplings) into the complete gear drive models. Since each
subsystem is modeled separately using different FEM systems, it
is advantageous to parameterize models of subsystems and to use
the parameterization for optimization of chosen design parameters.
Final complex model of gear drive is assembled in MATLAB and
MATLAB tools are used for dynamical analysis of the nonlinear
system. The contribution is further focused on developing of a
methodology for investigation of behavior of the system by Nonlinear
Normal Modes with combination of the MSM using numerical
continuation method. The proposed methodology will be tested using
a two-stage gearbox including its housing.

	%P 2311 - 2318