Behaviours of Energy Spectrum at Low Reynolds Numbers in Grid Turbulence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Behaviours of Energy Spectrum at Low Reynolds Numbers in Grid Turbulence

Authors: Md. Kamruzzaman, L. Djenidi, R. A. Antonia

Abstract:

This paper reports an experimental investigation of the energy spectrum of turbulent velocity fields at low Reynolds numbers in grid turbulence. Hot wire measurements are carried out in grid turbulence with subjected to a 1.36:1 contraction of the wind tunnel. Three different grids are used: (i) large square perforated grid (mesh size 43.75mm), (ii) small square perforated grid (mesh size 14. and (iii) woven mesh grid (mesh size 5mm). The results indicate that the energy spectrum at small Reynolds numbers does not follow Kolmogorov’s universal scaling. It is further found that the critical Reynolds number, below which the scaling breaks down, is around 25.

Keywords: Decay exponent, Energy spectrum, Taylor microscale Reynolds number, Taylor microscale, Turbulent kinetic energy.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1089297

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355

References:


[1] A.N. Kolmogorov, "The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers”, Dokl. Akad. Nauk SSSR 30. 1941,299 (Proc. R. Soc. London. Ser. A 434, 1991, 9-13).
[2] L. Djenidi, "Lattice –Boltzmann simulation of grid –generated turbulence,” J. Fluid Mech., vol. 552, 1964, pp. 13-35.
[3] P. Burattini, P. Lavoie, A. Agrawal, L. Djenidi and R.A. Antonia, "Power law od decaying homogeneous isotropic turbulence at low Reynolds number”, Phy.Rev.E73 (066304), 2006, 1-7.
[4] L. Djenidi and R.A. Antonia, "A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate,” Exp. Fluids, vol 53, 2012, pp. 1005-1013.
[5] N.N. Mansour and A.A. Wray, "Decay of isotropic turbulence at low Reynolds number,” Phys. Fluids, vol. 6, no 2, 1994, pp. 808-814.
[6] L. Djenidi, R.A. Antonia and S. Tardu, "Breakdown of Kolmogorov’s scaling in grid turbulence,” in Proc.1 4th European Turbulence Conference,, France, 2013.
[7] G. Comte-Bellot and S. Corrsin, "The use of a contraction to improve the isotropy of grid turbulence,” J. Fluid Mech.vol.25, part 4, 1966, pp. 657-682.
[8] Y.H. Pao, "Structure of turbulent velocity and scalar fields at large wavenumbers,” Phys. Fluids, vol. 8, no.6, 1965, pp. 1063-1075.
[9] S. K. Lee, A. Benaissa, L. Djenidi, P. Lavoie and R. A. Antonia ," Decay of passive-scalar fluctuations in slightly stretched grid turbulence”, Exp Fluids,2012,
[10] W.D. Stanley, "Digital signal processing,” Reston publishing company, inc, Reston, Virginia, 1975, pp.48-49.
[11] G. Comte-Bellot and S. Corrsin, ", Simple Eulerian time correlation of full and narrowband velocity signals in grid generated,` isotropic turbulence” J. Fluid Mech., Vol. 48, 1971, pp. 273-337.
[12] S.B. Pope, "Turbulent flows,” Cambridge Press, UK.
[13] G. K. Batchelor and A. A. Townsend, "Decay of turbulence in the final period,” Proc. R. Soc. London Ser. A 194, 1948, pp.
[14] P.G. Saffman, "The large- scale structure of homogeneous turbulence,” J. Fluid Mech. 27, 581, 1967.