Full Potential Study of Electronic and Optical Properties of NdF3
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32795
Full Potential Study of Electronic and Optical Properties of NdF3

Authors: Sapan Mohan Saini

Abstract:

We report the electronic structure and optical properties of NdF3 compound. Our calculations are based on density functional theory (DFT) using the full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation, known for treating the highly correlated 4f electrons properly, is able to reproduce the correct insulating ground state. We find that the standard LSDA approach is incapable of correctly describing the electronic properties of such materials since it positions the f-bands incorrectly resulting in an incorrect metallic ground state. On the other hand, LSDA + U approximation, known for treating the highly correlated 4f electrons properly, is able to reproduce the correct insulating ground state. Interestingly, however, we do not find any significant differences in the optical properties calculated using LSDA, and LSDA + U suggesting that the 4f electrons do not play a decisive role in the optical properties of these compounds. The reflectivity for NdF3 compound stays low till 7 eV which is consistent with their large energy gaps. The calculated energy gaps are in good agreement with experiments. Our calculated reflectivity compares well with the experimental data and the results are analyzed in the light of band to band transitions.

Keywords: FPLAPW Method, optical properties, rare earthtrifluorides LSDA+U

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1073653

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615

References:


[1] K. H. J. Buschow, Ferromagnetic Materials Vol. 1 edited by E.P. Wohlfahrt (North-Holland, Amsterdam) 1980, p 297.
[2] P. Fabeni, G. P. Pazzi and L. Salvini, Journal of Physics and Chemistry of Solids 52 (1991) 299; M. Madou, T. Otagawa, M. J. Tierney, J. Joseph and S. J. Oh, Solid State Ionics 53-56 (1992) 47; R. Burkhalter, I. Dohnke and J. Hulliger, Progress in Crystal Growth and Characterization of Materials 42 (2001) 1; A. A. Kalachev and V. V. Samartsev, Laser Physics 12 (2002) 1114; A. A. Kalinkin, A.A. Kalachev and V. V. Samartsev, Laser Physics 13 (2003) 1313.
[3] M. Bralic, N. Radic, S. Brinic and E. Generalic, Talanta 55 (2001) 581; Y. Tani, Y. Umezawa, K. Chikama, A. Hemmi and M. Soma, Journal of Electroanalytical Chemistry 378 (1994) 205;X. D. Wang, W. Shen, R. W. Cattrall, G. L. Nyberg and J. Liesegang, Australian Journal of Chemistry 49 (1996) 897.
[4] A. Kaminskii, Laser Crystals, Berlin: Springer (1990).
[5] O. Greis and J. M. Haschke, in: K. A. Gschneidner Jr. and L. Eyring (Ed.), Handbook on the Physics and Chemistry of Rare earths, vol.1 North-Holland, Amsterdam (1982) 387.
[6] R. E. Thoma and G. D. Brunton, Inorgan. Chem 5 (1966) 1937.
[7] Y. Xu and M. Duan, Phys. Rev. B 46 (1992) 11636.
[8] W. Burian, J. Szade, J. Deniszczyk, T. O'Keevan and Z. Celinski, Phys. Rev. B 74 (2006) 113110.
[9] G. Stephan, M. Nisar and A. Roth, Acad. Sci. B 274 (1972) 807.
[10] M. Nisar, A. Roth, G. Stephan and S. Robin, Opt. Commun. 8 (1973) 254.
[11] C. G. Olson, M. Piacentini and D. W. Lynch, Phys. Rev. B 18 (1978) 10 5740.
[12] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61 (1989) 689.
[13] R. W. G. Wyckoff (Ed), Crystal Structures, vol.2 Interscience, New York 1965.
[14] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universität Wien, Austria, (2001) ISBN 3-9501031-1-2.
[15] V. I. Anisimov, J. Zaanen and O. K. Andersen, Phys. Rev. B 44 (1991) 943; V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk and G. A. Sawatzky, Phys. Rev. B 48 (1993) 16929.
[16] O. Greis and J. M. Haschke, in: K. A. Gschneidner Jr. and L. Eyring (Ed.), Handbook on the Physics and Chemistry of Rare earths, vo1 20 North-Holland, Amsterdam (1995).
[17] B. N. Harmon, V. P. Antropov, A. I. Liechtenstein, I. V. Solovyev and V. I. Anisimov, J. Phys. Chem. Solids 56 (1995) 1521.
[18] W. S. Heaps, l. R. Elias and W. M. Yen, Phys. Rev. B 13 (1976) 94; G. K. Wertheim, A. Rosencwig, R. L. Choen, H. J. Guggenheim, Phy. Rev. Lett. 27,(1971), 505-507.
[19] M. Itoh, D. Iri and M. Kitaura, Journal of luminescence 129 (2009) 984- 987.
[20] M. Cukier, B. Gauthe and C. Wehenkel, J. Physique 41 (1980) 603-613.