
Abstract—Smart Grids employ wireless sensor networks for
their control and monitoring. Sensors are characterized by limitations
in the processing power, energy supply and memory spaces, which
require a particular attention on the design of routing and data
management algorithms.

Since most routing algorithms for sensor networks, focus on
finding energy efficient paths to prolong the lifetime of sensor
networks, the power of sensors on efficient paths depletes quickly,
and consequently sensor networks become incapable of monitoring
events from some parts of their target areas. In consequence, the
design of routing protocols should consider not only energy
efficiency paths, but also energy efficient algorithms in general.

In this paper we propose an energy efficient routing protocol for
wireless sensor networks without the support of any location
information system. The reliability and the efficiency of this protocol
have been demonstrated by simulation studies where we compare
them to the legacy protocols. Our simulation results show that these
algorithms scale well with network size and density.

Keywords—Data-centric storage, Dynamic Address Allocation,
Sensor networks, Smart Grid Communications.

I. INTRODUCTION

IRELES Sensor networks are recently gaining
popularity to realize smart grids for power systems to

improve their resilience, efficiency, adaptability, and
sustainability[1], [2]. They consist of a large number of tiny
devices with sensing capabilities, able to perform simple data
processing tasks, and to communicate wirelessly with other
similar devices. These networks are deployed in an ad-hoc
manner by densely scattering sensors across an area of
interest.

For disseminating and storing the sensed data, three
methods are investigated in literature[3], [4]: Local storage,
External storage and Data-centric storage.

In data-centric storage, events are named, and sensors
cooperate locally to detect named events. When a sensor
detects a named event, it determines the sensor in the network

G. Al-Sukkar is with the Electrical Engineering Department, The
University of Jordan, Amman, 11942 Jordan, (e-mail:
ghazi.alsukkar@ju.edu.jo).

I. Jafar is with the Computer Engineering Department, The University of
Jordan, Amman, 11942 Jordan, (e-mail: iyad.jafar@ju.edu.jo).

K. Darabkh is with the Computer Engineering Department, The University
of Jordan, Amman, 11942 Jordan, (e-mail: k.darabkeh@ju.edu.jo).

R. Al-Zubi is with the Electrical Engineering Department, The University
of Jordan, Amman, 11942 Jordan, (e-mail: r.alzub@ju.edu.jo).

M. Hawa is with the Electrical Engineering Department, The University of
Jordan, Amman, 11942 Jordan, (e-mail: hawa @ju.edu.jo).

that is responsible for that name, and then stores the data at
that sensor.

Which sensor is responsible for storing a type of data is
typically determined by taking a hash of the name,
andmapping that hash onto a sensor in the network. When the
base station wishes to query the network, it sends the query
only to the sensor responsible for the data relevant to the
query. In this approach, queries do not need to be flooded
through the network, nor does data that the user does not ask
about get sent to the base station. Additionally, the query may
be partially processed at the sensors storing the data, allowing
a small message consisting of aggregated data to be sent to the
base station instead of all individual records relevant to the
query.

Data-centric storage provides a (key, value) based
associative memory, in a way similar to the distributed hash
table (DHT) systems designed for the internet use, like Pastry
[5], CAN [6], Chord [7], and Tapestry [8], where nodes
communicate in an application level fashion, through the
formation of an overlay network between them.

In data-centric storage, events are named with keys, and
both the storage of an event and its retrieval are performed
using these keys. Thus the two operations available in data-
centric storage based sensor network are:

Put(k,v): which stores the observed data v according to the
key k.

Get(k): retrieves whatever stored value associated with key
k.

As shown by [4] data-centric storage is preferable in cases
where (a) the sensor network size is large, (b) there are many
detected events and not all event types are queried. In this
work we concentrate on this method, since it seems to be the
most efficient way of data dissemination and storage in sensor
networks.

In this paper, we present two correlated algorithms for
energy efficient routing in wireless sensor networks.They are
completely distributed algorithms without any centralized
control, which result in all sensors have identical
responsibilities.

In the first algorithm a sensor is assigned a unique address
according to its relative location in the network, the address
assignment mechanism works in a distributed manner where
address conflict is avoided without the need to flood the whole
network. Sensors change their addresses as they move, thus
their addresses have a topological meaning.

The second algorithm is the routing algorithm which is very
simple and depends only on the node’s first hop neighbors,

Ghazi AL-Sukkar, Iyad Jafar, Khalid Darabkh, Raed Al-Zubi, and Mohammed Hawa

Cooperative Energy Efficient Routing for
Wireless Sensor Networks in Smart Grid

Communications

W

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:7, No:4, 2013

409International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:7
, N

o:
4,

 2
01

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
16

0/
pd

f

and the forwarding process resembles to some degree the one
found in Pastry peer-to-peer protocol [5].

The rest of this paper is organized as follows. In section II
we describe the related work. In section III we describe the
address allocation procedure.Section IV describes the routing
procedure.Data centric storage mechanism is investigated in
section V. Topology dynamism and address reassignment
areexplained in section VI.Simulation results are introduced in
section VII. Finally we conclude with section VIII.

II. RELATED WORK

Ratnasamy et al. [3] were the primaries who introduce the
concept of data-centric storage in sensor networks, as well as
they describe the simpler concepts of local and external
storage. Their work continued in [4], where they describe
GHT, a data-centric storage system for sensor networks built
on top of GPSR [9]. Their approach depends on the use of
geographical information, where they assumed that each node
knows its location coordinates using some technologies (e.g.
GPS), although this works well, however, location information
is not always available. Current methods of determining the
location information consume much energy and may not be
possible in many sensor network scenarios. Also GPSR works
best when geographic locality accurately represents network
topology.

Taking this in consideration, a number of new routing
protocols where invented, that try to estimate node coordinates
in a relative way without the assistant of any positioning
system, examples of these protocols NoGeo[10] and GEM
[11]. NoGeoproposed an algorithm for performing node to
node routing with only neighbor information, without
geographic location information. Where a virtual coordinate
system is built by having nodes on the perimeter of the
network determine their positions relative to each other. They
then use an iterative relaxation algorithm for other nodes to
determine their coordinates.

GEM constructed a labeled graph that embedded in the
original network topology in a distributed fashion. In that
graph, each node is given a label that encodes its position in
the original network topology.

To do that, they developed two algorithms, with the first
one VPCS, they embedded a ringed tree into the network
topology, and labeled the sensors in such a manner as to create
a virtual polar coordinate space. They have also developed
VPCR, a routing algorithm where each node keeps state only
about its immediate neighbors, and requires no geographical
information.

III. ADDRESS ALLOCATION ALGORITHM

This algorithm enables the sensors to allocate addresses in a
local way i.e., without the need to contact faraway nodes in
the network or flooding the whole network, at any given time;
each node manages a range of addresses including its own
address.Node addresses are dynamically assigned depending
on the node’s current position in the network. More

specifically, the addresses are organized as a tree. We call this
the address tree, see Fig. 1.

To understand this addressing assignment mechanism, let us
assume that the addresses are ddigits with base 10 numbers, so
addresses will be in this form , where

. As we will notice, the choice of the base B will
determine the maximum number of children a node could
have, in our example here the maximum number of children is
9.

The base station will be a logical choice to play the role of
the first node which will form the network (since it is the most
stable node), so it will take the all zeroes address 00. . .0, we
call it the root node, as sensor nodes arrive in the
neighborhood of the root (i.e., they are in its transmission
range), they contact it to obtain an address (call these nodes
level 1 nodes). The root node control the first digit (leftmost
digit) of the address, where it give the first arriving node
address 100…0, the second arriving node 200…0 and so on up
to 900…0. These first level nodes control the second digit
(from left) in the address, so when nodes connect to any of
these nodes and ask for address, they fix the first digit as their
address and change the second digit according to node arriving
sequence.For example if a node arrive and it is in the
neighborhood of the node with address 100…0 and ask this
node for an address, then node 100…0 will give it the address
110…0, the second node ask 100…0 for an address will take
120…0 and so on (we call node 100…0 parent of nodes
110…0, 120…0,…,190…0 and thus they are its children).

These second level nodes take control of the third digit and
so on. Fig. 1 show an example of an address tree with three
digits addresses, for d = 3digits, the entire address space can
berepresented by xxx, where xЄ {0, 1,…, 9}, nodes in level
lsubtree are the children of the node in level l-1. We call the
last level nodes in the tree leaves. These leaves do not take
control of addresses since address space reaches its limit.

Address tree illustrates how addresses are allocated; it does
not represent the actual network topology although address of
a node depends on its current position in the network. Fig. 2
shows an example of a network topology which uses this
algorithm.

When a new node i arrives in the network, it receives an
address Ri (call it temporary address) which will be used for
routing. A new node in the network receives the temporary
address from one of its neighbors (we call this neighbor the
parent neighbor Pi). We assume the existence of some
bootstrap mechanism which allows new nodes to identify their
neighbors in the network.

This mechanism results in a list containing information
about all neighbors. Let be the set of q
nodes in the neighborhood of node i(in its transmission
region). The neighborhood listLi of node i is defined as

where

is the children list managed by node nj,
.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:7, No:4, 2013

410International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:7
, N

o:
4,

 2
01

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
16

0/
pd

f

The neighborhood list is used to determine which existing
node in the neighborhood will give a temporary address to the
arriving node. Several factors must be taken into account.

We apply the following criteria to assign one temporary
address to a new node. Using this criterion the joining node
selects, among a set of candidate neighbors, the node which
will be the parent neighbor of it. This node will be the one
with the least level i.e., the nearer to the root. If two or more
nodes have the same level then it chooses the node with the
least number of children, if a gain two or more nodes satisfy
this condition then it will choose the one with the least
address.

Fig. 1 Address tree with three digits decimal address space

After the new arriving node chooses the parent neighbor it
asks that parent for a temporary address which will be
assigned according to our address allocation algorithm, we
said that an association relationship established between the
two nodes. In Fig. 2 this association relationship is represented
by continuous thick lines, where the dotted thin lines represent
the neighborhood relationship.

IV. ROUTING ALGORITHM

The previously mention address allocation algorithm
simplifies the routing procedure as we will see.Where routing
is performed in a hop by hop basis.

Having obtained its temporary address, the new node i also
learns the temporary addresses of its immediate neighbors.
This neighborhood information will compose its routing table.

In this algorithm a node routes a message by simply
forwarding to the neighbor whose address is the closest to the
searched temporary address of the destination until the
messages reaches the destination. This forwarding procedure
resembles the forwarding procedure in Pastry [5]; where the
message is forwarded to a node from the routing tablethat has
a temporary address with longer shared prefix with the
temporary address of the destination.

If the node cannot find in its routing table such a node that
have a longer shared prefix matching, it simply forward the
message to its parent and so on until the message reach its
destination.

Fig. 2 shows an example of how the routing algorithm
works, here node 7 with R7 = 220 want to send message for

the destination 14 with R14 = 311. Node 7 find in its routing
table that node 16 has a temporary address that matches the
destination temporary address in the first digit, so it forwards
the message to this neighbor, in its turn node 16 forwards this
message to node 15 which is its parent neighbor since it does
not have in it routing table any node that has a longer prefix
matching with the destination node’s temporary address. Node
15 forward the message to node 11 which has a temporary
address that matches the destination’s temporary address in
two digits. Finally, this node forwards the message to node 14
which is the destination node.

Also Fig. 2 illustrates another routing example, where the
source is node 7 and the destination is node 4. As you can note
from this example, the message forwarded back to the root
node 0 which in its tern forward it to the destination.

0

1

3

25

8

6

4

7

000

100

110

200

111120

210

220

300

9
112

10
400

11
310

13

12
211

221

14
311

15320

16321

To 111

To 311

Fig. 2 A network with 17 nodes and three digits address space.
Numbers in the circles are nodes identifiers, whereas numbers beside

the circles are nodes addresses

The arrival of a new node affects only a limited number of
existing nodes (nodes that are in its direct transmission
region). The number of neighbors and, consequently, the
signaling overhead, depend only on the node’s transmission
range and are independent of the total number of nodes in the
system. Furthermore, a small amount of information suffices
to implement this routing algorithm. Each node only stores
information about itself and about its neighbors.

V. DATA-CENTRIC STORAGE MECHANISM

As we will see, implement these algorithms in sensor
networks will simplify applying data-centric storage in these
kinds of networks. Here we will explain how this is done.

A. Event Storing Procedure Put (k,v)

This operation is used to identify the node which will be
responsible for storing a sensed named event v. We will
assume the existence of previously known naming system,
which maps each defined event to a key k.

By using any well-known functions like SHA-1 [12], the
sensor i which detect the event v, hashes the key of the sensed
event, and obtains an m-bit number. This number is then
translated using certain function into another number which
falls in the temporary address space, this number Rr is used to

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:7, No:4, 2013

411International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:7
, N

o:
4,

 2
01

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
16

0/
pd

f

find the sensor which will be responsible of storing the event
data v, as follows.

Sensor i forwards a registration message using Rr as a
destination address, by applying the routing procedure as in
section IV.This request will be forwarded until it reaches the
sensor having temporary address that has the longest prefix
matching with Rr.

So this sensor is the one responsible for storing the sensed
data event v.

B. Event Lookup Procedure Get(k)

The interested node s apply the same globally know hash
function on the events key, so it well get a temporary address
Rd , this temporary address is the one used to find the sensor
which is responsible for storing this event value v.

To find this sensor, node s forwards a lookup message using
Rd as a destination address, applying the routing algorithm in
section IV, this message will be forwarded until it reaches the
sensor with the longest prefix matching with Rd, this sensor is
the final destination. So it is our target, which will respond
with the value v corresponding to the key k.

VI. TOPOLOGY DYNAMISM AND ADDRESS REASSIGNMENT

Our algorithms have to deal with dynamic topology changes
caused by sensors voluntarily join or leave the network due to
sensors mobility, or by sensors failures due to energy
depletion (though some may fall prey to a hostile
environment). When a sensorideparture,the system must
guarantee the stability of the routing protocol, also the
persistency and the consistency requirements of the
framework have to be guaranteed.

A. Persistency

To ensure the persistency of the system in case of dynamic
topology changes, the sensed event data v has to be stored in
multiple locations. These locations have to be chosen in an
efficient way.

We suggest here to store v in different branches of the
address tree, so in case of a complete distortion in the first
level subtree, the data v is guaranteed to be available in
another subtree.

To do that we have to modify the hash function in such a
way to give use multiple numbers which will be used to store
the data in multiple locations. One simple way to do that is to
modify the left most digit in the number which result from
applying the original hash function.

B. Consistency

To ensure consistency we have to deal with sensor
movement and sensor sudden failure.

We consider that before leaving its location, a sensor
explicitly hands overits temporary address Ri,its neighborhood
set Ni, neighborhood list Li, its children list Ci, and the

associated mapping information database to its parent
neighbor1.

In this situation we have to deal with one of the following
two cases:

Case 1: The leaving sensor i is a leaf node, Fig. 3, shows an
example, where node 9 leaves the network (or changes its
position), in this case, the node mobility will cause no impact
on the organization of the topology, the only process that will
take place is the handover of the mapping information
database, to the parent Pi, and the temporary address of the
leaving node will be available again for its parent to be
assigned to another node.

0

1

3

25

8

6

4

7

000

100

110

200

111120

210

220

300

9
112

10
400

11
310

13

12
211

221

14
311

15320

16321

Fig. 3 Leaf node 9 and node 1 leave (or change their position)

Case 2: The leaving node is not a leaf node; it could be any
node in any level of the address tree.So the system must
guarantee the persistency and the consistency after a node
departure. In Fig. 3, node 1 leaves the network, the parent
neighbor is node 0, and it leaves behind four descendants; its
two children, node 2 and 5, and the children of node 2; which
are node 4 and 9.

Based on the received neighborhood list Li of the depart
node i, its parent neighbor Pi will face one of the following:

The children of the leaved node i are also neighbors of the
parent node Pi of i i.e., , in this case the parent
neighbor establishes an association relationship with these
node, telling them that it now play the role of their
previous parent i and no other operation will be required.
Thus any messaged directed to (through) or from these
children will be processed by the parent neighbor of the
previously departed node. We call this a smooth
reassignment.
All or some children of the leaved node i are note
neighbors of the parent node Pi of i i.e., , in this
case, the parent neighbor Pi try to find the set S of the
children nodes that are also neighbors to itself, i.e.,

, if it is not empty , then the parent
neighbor establishes an association relationship with these
node as in the previous case, so these node will keep their
temporary address.

1
We assume the existence of a mechanism that allows a node to determine

when it leaves its location.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:7, No:4, 2013

412International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:7
, N

o:
4,

 2
01

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
16

0/
pd

f

For the rest of children that are note neighbors
of Pi, after detecting the absence of their parent neighbor i,
they will try to rejoin the network as they are a new arriving
nodes, so they will ask another node with a higher level for a
new temporary address and establish an association
relationship with it, and inform all of its children nodes about
the address change, so these nodes will change their addresses
according to the new address of their parent, these children
will do the same process, this process will repeated recursively
until the change include all the nodes in their subtree.

If a node from set f could not find a node with higher level
to establish an association relationship with it, this node will
try to establish an association relationship with nodes in the
same level as its current one or even with lower level.

This node cannot be one from the subtree of the leaved
node, in case that they still hold the previous temporary
address.

At the same time this node will send a message for all of its
children telling them to rejoin the network, in this case each
one of these children will try in its turn to apply the same
previous mechanism which will recursively repeated. See Fig.
4.

Taking this case in consideration, each time a new node
arrives in a location that has been previously occupied by
another node, the parent neighbor verifies if the new node is
appropriate to receive the previous handed over temporary
address and the associated mapping information database.

For doing this, the parent neighbor compares the
neighborhood set sent by the previous mobile node, before it’s
moving, with the one for the new arrived node. If the new
node is also a neighbor of the children of the previously leaved
node i.e. if , the parent neighbor assigns the
temporary address and the mapping information database of
the previously leaved node to the new node. However, if the
new node cannot satisfy this condition a new temporary
address will be attributed to it, according to the described
joining procedure.

The mechanism to deal with sensor sudden failure is same
as the one used in sensor movement. The difference here is
that in case of sensor sudden failure, its neighborhood set Ni,
neighborhood list Li, and its children list Ci of the failed sensor
i are not available for its parent neighbor. In this case its
parent neighbor and its children will depend on the received
hello messages and the routing table, to decide if they are still
neighbors, so they could apply the same mechanism in the
case of sensor movement. This will result just in a higher
handover time than the case of sensor movement, since
discovering sensor sudden failure, and the dependency on the
hello messages, will take longer time.

0

3

25

8

6

4

7

000

410

200

420330

210

220

300

9
430

10
400

11
310

13

12
211

221

14
311

15320

16321

Fig. 4 This figure shows the network after node 1 leaved the network

VII. SIMULATION RESULTS

In the following, we present the simulation results in which
we compare the performance of our proposed protocol (we
named it SenPARTY) with that of the well-known reactive
routing protocol, ADOV [13], after applying a simplified
version of a P2P service over it. We used AODV to compare
with, because of the relatively low routing overhead in
reaction to low traffic arrival rate, and due to the stability of
NS code that implement of this protocol, Further details about
other comparisons with other routing protocols is available in
[15]. Simulations were performed using the Network
Simulator NS2 [14]. Performance comparisons are studied in
terms of overhead, throughput and energy consumption.

For all simulations, we used the standard values of NS2.
The duration of all the NS2 simulations was set to 300
seconds; the first 20 seconds were free of data traffic, allowing
the initial address allocation to take place and for the network
to organize itself. In order to study the effect of network
density on the overall performance, the size of the simulation
area was chosen to keep average sensor degree at two values;
the first one was 10 while the second one was set to 30. We
used UDP/CBR flows with 5 seconds interval. In our
simulation, the size of the address was set to 10 decimal digits.
Table I shows most of the important simulation parameters
used in all simulation scenarios.

For the mobility we used the random waypoint model with
an average speed of 5 m/sec and 20 seconds as an average
pause time. We used three mobility scenarios, in the first one
we used a static topology where all sensors were not moving
during the whole simulation run, in the second scenario 10%
of the sensors were selected randomly to move, while in the
last scenario 25% of the sensors were moving.

TABLE I
SIMULATION PARAMETERS

Parameters Setting

Hello message rate
SenPARTY Signalling packet size
CBR packet size
CBR packet interval
Address request waiting time
Senor velocity

1s
48 bytes
625 bytes
5 s
200 ms
5 m/s

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:7, No:4, 2013

413International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:7
, N

o:
4,

 2
01

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
16

0/
pd

f

A. Increasing Network Size with Various Densities

The first set of experiments compares the performance of
SenPARTY and AODV protocol with increasing network size
while keeping the traffic load constant at 100 CBR flows. The
source and destination of each CBR flow were selected
randomly, also in the mobility cases the mobile sensors were
selected randomly. In order to study the scalability of these
protocols with high number of sensors, we varied the number
of sensors from 50 to 500. Furthermore, to study the effect of
node density on the scalability of these protocols, we chose
two different densities.

Fig. 5 and Fig. 6 show that SenPARTY achieves high
delivery ratios almost above 70% in all mobility scenarios
irrespective of node density. With increasing number of
sensors, delivery ratios do not decrease much in case of
SenPARTY, while for AODV with high density (i.e. 30) they
decrease dramatically, this happen because in high density,
AODV queue packets while it repair routes that fail due to
congestion which is a consequence of high density.
Additionally, packets spend more time in the interface queues
because of collision avoidance and packet retransmissions at
the MAC layer. Accordingly, the delivery ratio decreases
because packets are dropped when interface queues fill up.

Increasing the network size aggravates the problem because
the message overhead to repair routes grows and longer routes
are more likely to fail. The large increase in per node overhead
per second for AODV in Fig. 7 and Fig. 8 illustrates this
problem.

AODV incurs a high overhead to repair a failed route
because it uses flooding. SenPARTY has a low message
overhead which is independent of the size of the network,
because it uses a local unicast messages to repair a failed
route.

For both protocols, when mobility increases, there are more
route failures because nodes move, this result in more message
overhead and lower delivery ratio. In all scenarios,
SenPARTY achieves low overhead for all network sizes with
good delivery ratios. It can do this for the reasons mentioned
previously and because it can repair routes with lower
overhead than the other protocols.

Fig. 9 and Fig. 10 show that the average consumed energy
in SenPARTY is always lower than that of AODV. In high
density, energy consumption increases for AODV with
increasing network size, again, this could be explained by the
increase in number of collisions due to flooding mechanism
used in path establishment and repair. Therefore, as the
mobility increase, the energy consumption will increase.

For AODV in low density and SenPARTY in both
densities, the average consumed energy decreases slowly with
increasing network size, this is due to the fact that we kept the
overall traffic load constant as we increase the network size,
accordingly the traffic overhead will distributed among more
sensor nodes, besides, as illustrated in Fig. 5 and Fig. 6, the
number of CBR packets delivered correctly decreases as
network size increase.

B. Increasing Traffic Load with Various Densities

The second set of experiments evaluates the performance of
these two protocols with increasing traffic load while keeping
the size of the network constant at 200 nodes. We varied the
total number of CBR flows between 10 and 250.

As illustrated in Fig. 11 and Fig. 12, SenPARTY achieves
higher delivery ratio than AODV in all scenarios. As the
number of flows increases, the delivery ratio drops. Also with
mobility increase the delivery ratio decrease, this islogically,
since with an elevation in the dynamism of the network more
route failures will occur.

The variation in network density almost does not affect
delivery ratio in SenPARTY while in AODV, high density
results in more decay in the delivery ratio as shown in Fig 11.

Fig. 13 and Fig. 14 show a higher overhead for AODV than
that for SenPARTY at more than 50 flows, this overhead
increases dramatically with increase in traffic load, while it is
almost stay at a constant value in SenPARTY, this value
represent the average number of neighbors for each sensor. As
mentioned before this is due to the fact that SenPARTY uses
uncomplicated routing mechanism which depends on
neighborhood forwarding, and exchanges a local unicast
messages to repair a failed route. Meanwhile AODV depends
on flooding the whole network, so with high density more
collision will happen at the MAC layer, which causes more
and more route failure and hence more overhead.

Obviously energy consumption in SenPARTY is lower than
that in AODV as we can notice from Fig. 15 and Fig. 16. This
consumption in energy increases with the increase in traffic
load, node density, and mobility.

Fig. 5 Throughput vs. Network Size: 100 UDP/CBR flows,
Density = 30

Fig. 6 Throughput vs. Network Size: 100 UDP/CBR flows,
Density = 10

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:7, No:4, 2013

414International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:7
, N

o:
4,

 2
01

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
16

0/
pd

f

Fig. 7 Overhead vs. Network Size: 100 UDP/CBR flows,
Density = 30

Fig. 8 Overhead vs. Network Size: 100 UDP/CBR flows,
Density = 10

Fig. 9 Energy consumption vs. Network size, 100 UDB/CBR flows,
Density = 30

Fig. 10 Energy consumption vs. Network size, 100 UDB/CBR flows,
Density = 10

C.Increasing Traffic Load with Various Densities

The second set of experiments evaluates the performance of
these two protocols with increasing traffic load while keeping
the size of the network constant at 200 nodes. We varied the
total number of CBR flows between 10 and 250.

As illustrated in Fig. 11 and Fig. 12, SenPARTY achieves
higher delivery ratio than AODV in all scenarios. As the
number of flows increases, the delivery ratio drops. Also with
mobility increase the delivery ratio decrease, this islogically,
since with an elevation in the dynamism of the network more
route failures will occur.

The variation in network density almost does not affect
delivery ratio in SenPARTY while in AODV, high density
results in more decay in the delivery ratio as shown in Fig 11.

Fig. 13 and Fig. 14 show a higher overhead for AODV than
that for SenPARTY at more than 50 flows, this overhead
increases dramatically with increase in traffic load, while it is
almost stay at a constant value in SenPARTY, this value
represent the average number of neighbors for each sensor. As
mentioned before this is due to the fact that SenPARTY uses
uncomplicated routing mechanism which depends on
neighborhood forwarding, and exchanges a local unicast
messages to repair a failed route. Meanwhile AODV depends
on flooding the whole network, so with high density more
collision will happen at the MAC layer, which causes more
and more route failure and hence more overhead.

Obviously energy consumption in SenPARTY is lower than
that in AODV as we can notice from Fig. 15 and Fig. 16. This
consumption in energy increases with the increase in traffic
load, node density, and mobility.

Fig. 11 Throughput vs. Flow count: 200 Sensor, Density = 30

Fig. 12 Throughput vs. Flow count: 200 Sensor, Density = 10

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:7, No:4, 2013

415International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:7
, N

o:
4,

 2
01

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
16

0/
pd

f

Fig. 13 Overhead vs. Flow count: 200 Sensor, Density = 30

Fig. 14 Overhead vs. Flow count: 200 Sensor, Density = 10

Fig. 15 Energy consumption vs. Flow count, 200 Sensors,
Density = 30

Fig. 16 Energy consumption vs. Flow count, 200 Sensors,
Density = 10

VIII. CONCLUSION

Two algorithms were proposed for energy efficient routing
in wireless sensor networks for Smart Grid communications,
without the support of any location information system.

Neighborhood information exchange are sufficient to
implement the routing mechanism and maintain the routing
path, consequently, low signaling overhead is generated, only
local neighborhood communication.

We expect these algorithms to be applied in environments
with large number of sensors where the scalability of the
network has great issue such as Smart Grids.

We have presented simulation results where we compared
our protocol with a P2P supported AODV protocol, since
AODV is one of the most optimized protocols, and its
overhead is relatively small for almost low data arrival rate.
The results demonstrate that our protocol provides robust
performance across a range of different environments and
workloads.

REFERENCES

[1] V.C. Gungor, “Multimedia Wireless Sensor Networks for Smart Grid
Applications,” in IEEE COMSOC MMTC E-Letter, vol. 6, no. 12, pp.9-
11, 2011.

[2] Emilio Ancillotti, Raffaele Bruno, and Marco Conti, “The Role of the
RPL Routing Protocol for Smart Grid Communications,” IEEE
Communications Magazine, Vol.51, no.1, January 2013, pp. 75–83.

[3] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. “Data-
centric storage in sensornets,” Proc. ACM SIGCOMM Workshop on Hot
Topics In Networks, 2002.

[4] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S.
Shenker. “GHT: a geographic hash table for data-centric storage,”
Proceedings of the ACM Workshop on Sensor Networks and
Applications, pp. 78--87, Atlanta, Georgia, USA:ACM, September 2002.

[5] Rowstron and P. Druschel, “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,” in Proceedings of the
Middleware, 2001.

[6] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott
Shenker. “A Scalable Content-Addressable Network,” In Proceedings of
the ACM SIGCOMM, 2001.

[7] Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
“Chord: A Scalable Peer-topeer Lookup Service for Internet
Applications,” ACM SIGCOMM 2001, San Diego, CA, August 2001.

[8] Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE Journal on Selected Areas in communications, vol.
22, no. 1, pp. 41–53, January 2004.

[9] Karp and H. T. Kung. “GPSR: greedy perimeter stateless routing for
wireless networks,” Proceedings of the 6th annual international
conference on Mobile computing and networking, Boston,
Massachusetts, United States, 2000, pages 243–254.

[10] Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in ACM MobiCom,
2003.

[11] James Newsome and Dawn Song, “Gem: graph embedding for routing
and data-centric storage in sensor networks without geographic
information,” in SenSys ’03: Proceedings of the 1st international
conference on Embedded networked sensor systems, New York, NY,
USA, 2003, pp. 76–88, ACM Press.

[12] “FIPS 180-1, Secure Hash Standard.” U.S. Department of
commerce/NIST, National Technical Information Service, Springfield,
Apr. 1995.

[13] C. Perkins and E. Royer,“Ad hoc on demand Distance Vector routing,”
in proceedings of the 2nd IEEE Workshop on Mobile Computing Systems
and Applications: (WMCA’99), New Orleans, Louisiana, USA, February
1999.

[14] Network Simulator, http://www.isi.edu/nsnam/ns/.
[15] N. Sarkar, and W. Lol, “A study of MANET Routing Protocols: Joint

Node Density, Packet Length and Mobility”, in Proceedings of ISCC '10
The IEEE symposium on Computers and Communications, Reccione,
Italy, June 2010.

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:7, No:4, 2013

416International Scholarly and Scientific Research & Innovation 7(4) 2013 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:7
, N

o:
4,

 2
01

3
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/9
16

0/
pd

f

