WASET
	%0 Journal Article
	%A Catherine A. Todd and  Fazel Naghdy
	%D 2011
	%J International Journal of Biomedical and Biological Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 49, 2011
	%T Real-time Haptic Modeling and Simulation for Prosthetic Insertion
	%U https://publications.waset.org/pdf/90
	%V 49
	%X In this work a surgical simulator is produced which
enables a training otologist to conduct a virtual, real-time prosthetic
insertion. The simulator provides the Ear, Nose and Throat surgeon
with real-time visual and haptic responses during virtual cochlear
implantation into a 3D model of the human Scala Tympani (ST). The
parametric model is derived from measured data as published in the
literature and accounts for human morphological variance, such as
differences in cochlear shape, enabling patient-specific pre- operative
assessment. Haptic modeling techniques use real physical data and
insertion force measurements, to develop a force model which
mimics the physical behavior of an implant as it collides with the ST
walls during an insertion. Output force profiles are acquired from the
insertion studies conducted in the work, to validate the haptic model.
The simulator provides the user with real-time, quantitative insertion
force information and associated electrode position as user inserts the
virtual implant into the ST model. The information provided by this
study may also be of use to implant manufacturers for design
enhancements as well as for training specialists in optimal force
administration, using the simulator. The paper reports on the methods
for anatomical modeling and haptic algorithm development, with
focus on simulator design, development, optimization and validation.
The techniques may be transferrable to other medical applications
that involve prosthetic device insertions where user vision is
obstructed.
	%P 1 - 9