Investigation of Water Vapour Transport Properties of Gypsum Using Genetic Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Investigation of Water Vapour Transport Properties of Gypsum Using Genetic Algorithm

Authors: Z. Pavlík, J. Žumár, M. Pavlíková, J. Kočí, R. Černý

Abstract:

Water vapour transport properties of gypsum block are studied in dependence on relative humidity using inverse analysis based on genetic algorithm. The computational inverse analysis is performed for the relative humidity profiles measured along the longitudinal axis of a rod sample. Within the performed transient experiment, the studied sample is exposed to two environments with different relative humidity, whereas the temperature is kept constant. For the basic gypsum characterisation and for the assessment of input material parameters necessary for computational application of genetic algorithm, the basic material properties of gypsum are measured as well as its thermal and water vapour storage parameters. On the basis of application of genetic algorithm, the relative humidity dependent water vapour diffusion coefficient and water vapour diffusion resistance factor are calculated.

Keywords: Water vapour transport, gypsum block, transient experiment, genetic algorithm.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1071282

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615

References:


[1] J. Carmeliet, S. Roels, "Determination of the isothermal moisture transport properties of porous building materials", J. Therm. Env. Build. Sci., vol. 24, pp. 183-210, 2001.
[2] R. ČernÛ, P. Rovnaníková, Transport Processes in Concrete, 1st ed. London: Spon Press, 2002.
[3] P. Häupl, H. Fechner, "Hygric material properties of porous building materials", J. Build. Phys., vol. 26(3), pp. 259-284, 2003.
[4] C. E. Mossman, Literature survey of adsorption studies on porous media. Report No. 126 of the division of building physics, Ottava: NRC, 1957.
[5] H. Derluyn, H. Janssen, J. Diepens, D. Derome, J. Carmeliet, "Hygroscopic behavior of Paper and Books", J. Build. Phys., vol. 31, pp. 9-34, 2007.
[6] B. Johannesson, M. Janz, "Test of four different experimental methods to determine sorption isotherms", J. Mat. Civ. Eng., vol. 14(6), pp. 471- 477, 2002.
[7] M. Jiři─ìkov├í, Application of TDR Microprobes, Minitensiometry and Minihygrometry to the Determination of Moisture Transport and Moisture Storage Parameters of Building Materials, CTU Report, vol. 8, no. 2, 2004.
[8] S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. ČernÛ, Z. Pavlík, Ch. Hall, K. Kumaran, L. Pel, R. Plagge, "Interlaboratory Comparison of Hygric Properties of Porous Building Materials", J. Therm. Env. Build. Sci., vol. 27(4), pp. 307-325, 2004.
[9] R. ČernÛ (ed.), Complex System of Methods for Directed Design and Assessment of Functional Properties of Building Materials: Assessment and Synthesis of Analytical Data and Construction of the System, Prague: CTU Press, 2010.
[10] J. Ko─ì├¡, J. Žum├ír, Z. Pavl├¡k, R. ─îern├¢, "Application of Genetic Algorithm for Determination of Water Vapor Diffusion Parameters of Building Materials", J. Build. Phys., vol. 35(3), pp. 238-250, 2012.
[11] J. Ko─ì├¡, J. Mad─øra, J. Žum├ír, Z. Pavl├¡k, R. ─îern├¢, "Inverse Analysis of Water Vapour Transport in Building Materials Using Genetic Algorithm", Proceedings of 9th Nordic Symposium on Building Physics, Tampere: Tampere University of Technology, pp. 665-672, 2011.
[12] M. Pavlíková, Z. Pavlík, M. Keppert, R. ČernÛ, "Salt transport and storage parameters of renovation plasters and their possible effects on restored buildings' walls," Const. Build. Mat., vol. 25(3), pp. 1205-1212, 2011.
[13] V. Nagy, L. M. Vas, "Pore characteristics determination with mercury porosimetry in polyester stample yarns," Fibres Text. East. Eur., vol. 13, pp. 21-26, 2005.
[14] M. Jiři─ìkov├í, Z. Pavl├¡k, L. Fiala, R. ─îern├¢, "Thermal properties of mineral wool materials partially saturated by water", Int. J. Thermophys, vol. 27, pp. 1214-1227, 2006.
[15] Z. Pavl├¡k, J. Žum├ír, I. Medve─Å, R. ─îern├¢, "Water vapor adsorption in porous building materials: experimental measurement and theoretical analysis", Transport Porous Med., vol. 91(3), pp. 939-954, 2012.
[16] J. Ko─ì├¡, J. Mad─øra, M. Jerman, R. ─îern├¢, "Determination of moisture diffusivity of AAC in drying phase using genetic algorithm", World Academy of Science, Engineering and Technology, vol. 61, pp. 863-868, 2012.
[17] H. M. K├╝nzel H. M., Simultaneous Heat and Moisture Transport in Building Components, PhD Thesis, Stuttgart: Fraunhofer IRB Verlag, 1995.
[18] R. Schirmer, Die Diffusionszahl von Wasserdampf-Luft-Gemischen und die Verdampfungsgeschwindigkeit, Beiheft VDI-Zeitschrift, Verfahrenstechnik 6, pp. 170-177, 1938.