Climatic Factors Affecting on Influenza Casesin Nakhon Si Thammarat
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32795
Climatic Factors Affecting on Influenza Casesin Nakhon Si Thammarat

Authors: S. Chumkiew, W. Srisang, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

This study investigated the climatic factors associated with Influenza incidence in Nakhon Si Thammarat, Southern Thailand. Climatic factors comprised of the amount of rainfall, percent of rainy days, relative humidity, wind speed, maximum, minimum temperatures and temperature difference. A multiple stepwise regression technique was used to fit the statistical model. The result showed that the temperature difference and percent of rainy days were positively associated with Influenza incidence in Nakhon Si Thammarat.

Keywords: Influenza, Climatic Factor, Relative Humidity, Rainy day, Wind Speed.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1070139

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312

References:


[1] M. Urashima, "A Seasonal Model to Simulate Influenza Oscillation in Tokyo," Jpn. J. Infect. Dis., vol. 56, pp. 15-64, 2003.
[2] R. C. Baron, R. C. Dicker, K. E. Bussell, and J. L. Herndon, "Assessing trends in mortality in 121 U.S. cities, 1970-1979, from all cases and from pneumonia and influenza," Public Health Rep., vol. 103, pp. 120-128, 1988.
[3] R. N. Anderson, "Deaths: leading causes for 2000," Natl. Vital. Stat. Rep., vol. 50, pp. 1-85, 2002.
[4] S. Inouye, Y. Matsudaira, and Y. Sugihara, "Marks for Influenza Patients: Measurement of Airflow from the Mouth," Jpn. J. Infect. Dis., vol. 59, pp. 179-181, 2006.
[5] H. Miyamoto, K. Sahara, and M. Sugienda, "Sero-epidemiological analysis of Influenza pandemics in Shizaoka prefecture and all Japan," Intern. Congress Series, pp. 413-416, 2004.
[6] H. Miyamoto, K. Sahara, and M. Sugienda, "Sero-epidemiological analysis of Influenza pandemics in Shizaoka prefecture and all Japan," Intern. Conf. Options Control Influenza V, Okinawa, Japan, 2003.
[7] H. Miyamoto, "Study on the analysis of active dynamic surveillance of influenza and the pandemic prediction," Ann. Rep. Natl. Prog. Res. Functional Empowerment Examination Regional Health Inst. Scientific EBM, pp. 18-27, 2001.
[8] H. Miyamoto, "Analysis of active dynamic surveillance of influenza and the pandemic prediction," Jpn. J. Public Health, vol. 50, pp. 18-15, 2003.
[9] M. Curmen, and T. Devid, "Winter mortality, temperature and Influenza: has the relationship changed in recent years?," Popul. Trends, vol. 54, pp. 17-20, 1988.
[10] L. Simonsen, M. J. Clarke, G. D. Williamson, D. F. Stroup, N. H. Arden, and L. B. Schonberger, "The impact of Influenza epidemics on mortality: introducing a severity index," Am. J. Public Health, vol. 87, pp. 944-950, 1997.
[11] K. M. Neuzil, C. Hohlbein, and Y. Zhu, "Illness among schoolchildren during Influenza season: effect on school absenteeism, parental absenteeism from work, and secondary illness in families," Arch. Pediatr. Adolesc. Med., vol. 156, pp. 986-991, 2002.
[12] M. Arca, O. F. Di, F. Forastiere, C. Tasco, and C. A. Perucci, "Years of potential life lost (YPLL) before age 65 in Italy," Am. J. Public Health, vol. 78, pp. 202-205, 1988.
[13] Thailand, Bureau of Epidemiology, Department of Disease Control, the Ministry of Public Health.
[14] P. Barbazan, S. Yoksan, and J. P. Gonzalez, "Dengue hemorrhagic fever epidemiology in Thailand: description and forecasting of epidemics," Microbes Infect, vol. 4 (7), pp. 699-705, 2002.
[15] G. F. Pyle, "The Diffusion of Influenza," New Jersey: Rowland & Littlefield, 1986.
[16] J. A. Patz, A. K. Githeko, J. P. McCarty, S. Hussein, U. Confalonieri, and N. de Wet, "Climate Change and Infectious Disease," in Climate Change and Human Helath, A. J. McMicheal, D. H. Campbell-Lendrum, C. F. Corvalan, K. L. Ebi, A. K. Githeko, J. D. Scheraga and A. Woodward eds. Geneva: World Health Organization, 2003.
[17] C. Mims, H. Dockrell, R. Goering, I. Roitt, I. Wakelin, and M. Zuckerman, "Medical Microbiology," 3rd ed, New York: Mosby, 2004.
[18] M. Reyes, M. Eriksson, R. Bennet, K. O. Hedlund, and A. Ehrnst, "Regular pattern of respiratory syncytial virus and rotavirus infections and relation to weather in Stockholm," Clin. Microbiol. Infect., vol. 3, pp. 640-646, 1997.
[19] H. S. Izurieta, W. W. Thompson, P. Kramarz, D. K. Shay, R. L. Davis, F. De Stefano, S. Black, H. Shinefield, and K. Fukada, "Influenza and the rates of hospitalization for respiratory disease among infants and young children," N. Engl. J. Med., vol. 342, pp. 232-239, 2000.
[20] A. Cliff, P. Haggett, and J. Ord, Spatial Aspects of Influenza Epidemics. London: Page Bros, 1986.
[21] A. D. Cliff, P. Haggett, and M. R. Smallman-Raynor, Island Epidemics, Oxford: Oxford University Press, 563 pp., 2000.
[22] M. Meade and R. Earickson, Medical Geography, 2nd ed. New York: The Guilford Press, 2000.
[23] R. E. Hope-Simpson, The Transmission of Epidemic Influenza. New York: Plenum Press, 1992.