Motion Control of TUAV having Eight Rotors for Enhanced Situational Awareness
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Motion Control of TUAV having Eight Rotors for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for a nontrivial nonlinear eight-rotor helicopter model. This control strategy for chosen model of mini-TUAV has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines in hovering, consequently, fast SA with economy in energy of batteries can be asserted during search-andrescue operations.

Keywords: Flight control, eight-rotor helicopter, situational awareness, tactical unmanned aerial vehicle

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1070115

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687

References:


[1] M. R. Endsley, "Toward a theory of situation awareness in dynamic systems," Human Factors, vol. 37, pp. 32-64, March 1995.
[2] J. Gorman, N. Cooke, and J. Winner, "Measuring team situation awareness in decentralized command and control environments," Ergonomics, vol. 49, pp. 1312-1325, October 2006.
[3] Interim Brigade Combat Team Newsletter.
[Online]. Available: http://www.globalsecurity.org/military/library/ report/call/call_01-18_ toc.htm
[4] S. D. Prior, S. T. Shen, A. S. White, S. Odedra, M. Karamanoglu, M. A. Erbil, and T. Foran, "Development of a novel platform for greater situational awareness in the urban military terrain," in Proc. 8th International Conf. Engineering Psychology and Cognitive Ergonomics, San Diego, USA, 2009, pp. 120-125.
[5] I. Astrov and A. Pedai, "Control of hovering manoeuvres in unmanned helicopter for enhanced situational awareness," in Proc. International Conf. Industrial Mechatronics and Automation, Chengdu, China, 2009, pp. 143-146.
[6] S. Salazar, H. Romero, J. Gomez, and R. Lozano, "Real-time stereo visual servoing control of an UAV having eight-rotors," in Proc. 6th International Conf. Electrical Engineering, Computing Science and Automatic Control, Toluca, Mexico, 2009, pp. 1-11.
[7] K. Benzemrane, G. L. Santosuosso, and G. Damm, "Unmanned aerial vehicle speed estimation via nonlinear adaptive observers," in Proc. 2007 American Control Conf., New York, USA, 2007, pp. 985-990.
[8] H. Romero, S. Salazar, and R. Lozano, "Real-time stabilization of an eight-rotor UAV using optical flow," IEEE Trans. Robotics, vol. 25, pp. 809-817, August 2009.
[9] D. Krutko, Inverse Problems of Control System Dynamics: Nonlinear Models. Moscow: Nauka, 1989.
[10] L. S. Pontryagin, Ordinary Differential Equations. Moscow: Nauka, 1974.