A Power-Controlled Scheduling Scheme Using a Directional Antenna in Smart Home
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32795
A Power-Controlled Scheduling Scheme Using a Directional Antenna in Smart Home

Authors: Yongsun Kim, Hoyong Kang

Abstract:

This paper proposes a power-controlled scheduling scheme for devices using a directional antenna in smart home. In the case of the home network using directional antenna, devices can concurrently transmit data in the same frequency band. Accordingly, the throughput increases compared to that of devices using omni-directional antenna in proportional to the number of concurrent transmissions. Also, the number of concurrent transmissions depends on the beamwidth of antenna, the number of devices operating in the network , transmission power, interference and so on. In particular, the less transmission power is used, the more concurrent transmissions occur due to small transmission range. In this paper, we considered sub-optimal scheduling scheme for throughput maximization and power consumption minimization. In the scheme, each device is equipped with a directional antenna. Various beamwidths, path loss components, and antenna radiation efficiencies are considered. Numerical results show that the proposed schemes outperform the scheduling scheme using directional antennas without power control.

Keywords: Mmwave WPANs, directional scheduling, power-controlled scheduling scheme, smart home.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1069991

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381

References:


[1] S. K. Yong, and C. C Chong, "An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges," EURASIP Journal on Wireless Communications and Networking, vol. 2007, no. 1, January 2007.
[2] L. X. Cai, L. Cai, X. Shen, et al., "REX: a Randomized EXclusive Region based Scheduling Scheme for mmWave WPANs with Directional Antenna," IEEE Trans. on Wireless Communications, vol. 9, no. 1, 2010.
[3] M. Kim, Y. Kim, and W. Lee, "Performance Analysis of Directional CSMA/CA for IEEE 802.15.3c under Saturation Environments," ETRI Journal, vol.34, no.1, February 2012.
[4] B.J. Radunovic and Le Boudec, "Optimal Power Control, Scheduling, and Routing in UWB Networks," Selected Areas in Communications, IEEE Journal on, vol 22, pp 1252-1270, September 2004.
[5] Y. Kim, M. Kim, W. Lee, et al., "Power Controlled Concurrent Transmissions in mmWave WPANs," IEICE Transactions on Communications, appear to vol. E93-B, no. 10, Oct. 2010.
[6] IEEE P802.15.3c, IEEE 802 Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs): Amendment 2: Millimeter-wave based Alternative Physical Layer Extension, October 2009.
[7] P. Pagani, I. Siaud, N. Malhouroux, et al., "Adaptation of the France Telecom 60 GHz Channel Model to the TG3c Framework," IEEE P802.15-06-0218-00-003c, April2006.