Pressure Study on Mn Doped KDP System under Hydrostatic Pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32769
Pressure Study on Mn Doped KDP System under Hydrostatic Pressure

Authors: W. Paraguassu, S. Guerini, C. M. R. Remédios, P. T. C. Freire

Abstract:

High Pressure Raman scattering measurements of KDP:Mn were performed at room temperatures. The X-ray powder diffraction patterns taken at room temperature by Rietveld refinement showed that doped samples of KDP-Mn have the same tetragonal structure of a pure KDP crystal, but with a contraction of the crystalline cell. The behavior of the Raman spectra, in particular the emergence of a new modes at 330 cm-1, indicates that KDP:Mn undergoes a structural phase transition with onset at around 4 GP. First principle density-functional theory (DFT) calculations indicate that tetrahedral rotation with pressure is predominantly around the c crystalline direction. Theoretical results indicates that pressure induced tetrahedral rotations leads to change tetrahedral neighborhood, activating librations/bending modes observed for high pressure phase of KDP:Mn with stronger Raman activity.

Keywords: Dipotassium molybdate, High pressure, Raman scattering, Phase transition, ab initio

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1334512

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476

References:


[1] Lai X, Roberts KJ, Avanci LH, Cardoso LP and Sasaki JM 2003 Journal of Applied Crystallography 36 1230-1235.
[2] Kobayashi Y, Endo S, Deguchi K, Shimomura O and Kikegawa T 1997 Physical Review B 55 2850-2853.
[3] Kobayashi Y, Endo S, Ming LC and Kikegawa T 2002 Physical Review B 65.
[4] Kobayashi Y, Endo S, Koto K, Kikegawa T and Shimomura O 1995 Physical Review B 51 9302-9305.
[5] Lai XJ, Roberts KJ, Lyman PF, Cardoso LP and Sasaki JM 2005 Chemistry of Materials 17 4053-4061.
[6] Barrett NT, Lamble GM, Roberts KJ, Sherwood JN, Greaves GN, Davey RJ, Oldman RJ and Jones D 1989 Journal of Crystal Growth 94 689- 696.
[7] Remédios MR, Paraguassu W, Freire TC, Mendes-Filho J, Sasaki JM and Melo EA 2005 Phys. Rev. B 71 1.
[8] Melo EA, Serra KC, Souza RC, Moreira GC, Filho JM and Moreira JE 1992 Brasillian Journal of Physics 22 yvp.
[9] Davery RJ and Mullin JW 1974 J. Cryst. Growth. 23 89.
[10] Eremina TA, Kuznetsov VA, Eremin NN, Okhrimenko TM, Furmanova NG, Efremova EP and Urusov VS 2001 Gryst. Rep. 46 989.
[11] Byteva LM, Growth of Crystals and edited by NNS 1968 New York consultants Bureau ypv 26-32.
[12] Doolitle JR 1985 Nucl. Intrum. Methods B 9 334.
[13] Larson AC and Von Dreele RB 1986 General structure analysis system GSAS. Los Alamos report # LAUR 8-748. Los Alamos National Laboratory Los Alamos yvp.
[14] Rietveld HM 1967 Acta Crystallogr. 22 151.
[15] Remedios CMR, Paraguassu W, Saraiva GD, Pereira DP, de Oliveira PC, Freire PTC, Mendes J, Melo FEA and dos Santos AO 2010 Journal of Raman Spectroscopy 41 1318-1322.
[16] Ordejon P, Artacho E and Soler JM 1996 Physical Review B 5316 10441-10444.
[17] Kohn W and Sham LJ 1965 Physical Review 1404A A1133-A1138.
[18] Perdew JP, Burke K and Ernzerhof M 1996 Physical Review Letters 7718 3865-3868.
[19] Artacho E 1999 physica status solidi b 2151 809-817.
[20] Perdew JP and Zunger A 1981 Physical Review B 2310 5048-5079.
[21] Troullier N and Martins JL 1991 Physical Review B 433 1993-2006.
[22] Kleinman L and Bylander DM 1982 Physical Review Letters 4820 1425-1428.
[23] Monkhorst HJ and Pack JD 1976 Physical Review B 1312 5188-5192.
[24] Spek AL 2003 Journal of Applied Crystallography 36 7-13.