Optimization of Thermal and Discretization Parameters in Laser Welding Simulation Nd:YAG Applied for Shin Plate Transparent Mode Of DP600
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Optimization of Thermal and Discretization Parameters in Laser Welding Simulation Nd:YAG Applied for Shin Plate Transparent Mode Of DP600

Authors: Chansopheak Seang, Afia David Kouadri, Eric Ragneau

Abstract:

Three dimensional analysis of thermal model in laser full penetration welding, Nd:YAG, by transparent mode DP600 alloy steel 1.25mm of thickness and gap of 0.1mm. Three models studied the influence of thermal dependent temperature properties, thermal independent temperature and the effect of peak value of specific heat at phase transformation temperature, AC1, on the transient temperature. Another seven models studied the influence of discretization, meshes on the temperature distribution in weld plate. It is shown that for the effects of thermal properties, the errors less 4% of maximum temperature in FZ and HAZ have identified. The minimum value of discretization are at least one third increment per radius for temporal discretization and the spatial discretization requires two elements per radius and four elements through thickness of the assembled plate, which therefore represent the minimum requirements of modeling for the laser welding in order to get minimum errors less than 5% compared to the fine mesh.

Keywords: FEA, welding, discretization, ABAQUS user subroutine DFLUX

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1334490

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778

References:


[1] H. Al-Kazzaz, M. Medraj, X. Cao, and M. Jahazi. Nd:yag laser welding of aerospace grade ze41a magnesium alloy: Modeling and experimental investigations. Materials Chemistry and Physics, 109(1):61 - 76, 2008.
[2] Dean Deng. Fem prediction of welding residual stress and distortion in carbon steel considering phase transformation effects. Materials & Design, 30(2):359 - 366, 2009.
[3] Paolo Ferro, Andrea Zambon, and Franco Bonollo. Investigation of electron-beam welding in wrought inconel 706-experimental and numerical analysis. Materials Science and Engineering: A, 392(1-2):94 - 105, 2005.
[4] D. Gery, H. Long, and P. Maropoulos. Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. Journal of Materials Processing Technology, 167(2-3):393 - 401, 2005. International Forum on the Advances in Materials Processing Technology.
[5] J. Ronda, Y. Estrin, and G. J. Oliver. Modelling of welding. a comparison of a thermo-mechano-metallurgical constitutive model with a thermo-viscoplastic material model. Journal of Materials Processing Technology, 60(1-4):629 - 636, 1996. Proceedings of the 6th International Conference on Metal Forming.
[6] T. Schenk, I.M. Richardson, M. Kraska, and S. Ohnimus. Modeling buckling distortion of dp600 overlap joints due to gas metal arc welding and the influence of the mesh density. Computational Materials Science, 46(4):977 - 986, 2009.
[7] Muhammad Zain ul Abdein, Daniel Nelias, Jean-François Jullien, and Dominique Deloison. Prediction of laser beam welding-induced distortions and residual stresses by numerical simulation for aeronautic application. Journal of Materials Processing Technology, 209(6):2907 - 2917, 2009.
[8] L. Zhang, E. W. Reutzel, and P. Michaleris. Finite element modeling discretization requirements for the laser forming process. International Journal of Mechanical Sciences, 46(4):623 - 637, 2004.
[9] X. K. Zhu and Y. J. Chao. Effects of temperature-dependent material properties on welding simulation. Computers & Structures, 80(11):967 - 976, 2002.
[10] BERGHEAU,J. Modélisation numérique de soudage. Technique de l'ingénieur, BM 7 758 -1-15, 2004.
[11] John A. Goldak and Mehdi Akhlaghi, Computation welding mechanics, 77-78, Springer 2005.