WASET
	%0 Journal Article
	%A Rifah Ediati and  Jajang
	%D 2010
	%J International Journal of Mathematical and Computational Sciences
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 38, 2010
	%T Mathematical Model of Smoking Time Temperature Effect on Ribbed Smoked Sheets Quality
	%U https://publications.waset.org/pdf/7721
	%V 38
	%X The quality of Ribbed Smoked Sheets
(RSS) primarily based on color, dryness, and the presence or
absence of fungus and bubbles. This quality is strongly
influenced by the drying and fumigation process namely
smoking process. Smoking that is held in high temperature
long time will result scorched dark brown sheets, whereas if
the temperature is too low or slow drying rate would resulted
in less mature sheets and growth of fungus. Therefore need to
find the time and temperature for optimum quality of sheets.
Enhance, unmonitored heat and mass transfer during smoking
process lead to high losses of energy balance. This research
aims to generate simple empirical mathematical model
describing the effect of smoking time and temperature to RSS
quality of color, water content, fungus and bubbles. The
second goal of study was to analyze energy balance during
smoking process. Experimental study was conducted by
measuring temperature, residence time and quality parameters
of 16 sheets sample in smoking rooms. Data for energy
consumption balance such as mass of fuel wood, mass of
sheets being smoked, construction temperature, ambient
temperature and relative humidity were taken directly along
the smoking process. It was found that mathematical model
correlating smoking temperature and time with color is Color
= -169 - 0.184 T4 - 0.193 T3 - 0.160 0.405 T1 + T2 + 0.388 t1
+3.11 t2 + 3.92t3 + 0.215 t4 with R square 50.8% and with
moisture is Moisture = -1.40-0.00123 T4 + 0.00032 T3 +
0.00260 T2 - 0.00292 T1 - 0.0105 t1 + 0.0290 t2 + 0.0452 t3
+ 0.00061 t4 with R square of 49.9%. Smoking room energy
analysis found useful energy was 27.8%. The energy stored in
the material construction 7.3%. Lost of energy in conversion
of wood combustion, ventilation and others were 16.6%. The
energy flowed out through the contact of material construction
with the ambient air was found to be the highest contribution
to energy losses, it reached 48.3%.
	%P 282 - 286