WASET
	%0 Journal Article
	%A Wahidul K. Biswas
	%D 2009
	%J International Journal of Economics and Management Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 32, 2009
	%T Life Cycle Assessment of Seawater Desalinization in Western Australia
	%U https://publications.waset.org/pdf/7470
	%V 32
	%X Perth will run out of available sustainable natural
water resources by 2015 if nothing is done to slow usage rates,
according to a Western Australian study [1]. Alternative water
technology options need to be considered for the long-term
guaranteed supply of water for agricultural, commercial, domestic
and industrial purposes. Seawater is an alternative source of water for
human consumption, because seawater can be desalinated and
supplied in large quantities to a very high quality.
While seawater desalination is a promising option, the technology
requires a large amount of energy which is typically generated from
fossil fuels. The combustion of fossil fuels emits greenhouse gases
(GHG) and, is implicated in climate change. In addition to
environmental emissions from electricity generation for desalination,
greenhouse gases are emitted in the production of chemicals and
membranes for water treatment. Since Australia is a signatory to the
Kyoto Protocol, it is important to quantify greenhouse gas emissions
from desalinated water production.
A life cycle assessment (LCA) has been carried out to determine
the greenhouse gas emissions from the production of 1 gigalitre (GL)
of water from the new plant. In this LCA analysis, a new desalination
plant that will be installed in Bunbury, Western Australia, and known
as Southern Seawater Desalinization Plant (SSDP), was taken as a
case study. The system boundary of the LCA mainly consists of three
stages: seawater extraction, treatment and delivery. The analysis
found that the equivalent of 3,890 tonnes of CO2 could be emitted
from the production of 1 GL of desalinated water. This LCA analysis
has also identified that the reverse osmosis process would cause the
most significant greenhouse emissions as a result of the electricity
used if this is generated from fossil fuels
	%P 231 - 237