A Robust Controller for Output Variance Reduction and Minimum Variance with Application on a Permanent Field DC-Motor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32805
A Robust Controller for Output Variance Reduction and Minimum Variance with Application on a Permanent Field DC-Motor

Authors: Mahmood M. Al-Imam, M. Mustafa

Abstract:

In this paper, we present an experimental testing for a new algorithm that determines an optimal controller-s coefficients for output variance reduction related to Linear Time Invariant (LTI) Systems. The algorithm features simplicity in calculation, generalization to minimal and non-minimal phase systems, and could be configured to achieve reference tracking as well as variance reduction after compromising with the output variance. An experiment of DCmotor velocity control demonstrates the application of this new algorithm in designing the controller. The results show that the controller achieves minimum variance and reference tracking for a preset velocity reference relying on an identified model of the motor.

Keywords: Output variance, minimum variance, overparameterization, DC-Motor.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1333686

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310

References:


[1] H. Kwakernaak, "Minimax frequency domain performance and robustness optimization of linear feedback systems," IEEE Transactions on Automatic Control, vol. AC-30, no. 10, pp. 994-1004, 1985.
[2] I. D. Landau and G. Zito, Digital Control Systems Design,Identification, and Implementation, ser. Communications and Control Engineering. Springer London, 2006, ch. Design of Digital Controllers in the Presence of Random Disturbances, pp. 169-199.
[3] H.-W. Gao, G.-Y. Tang, and C. Li, "Optimal disturbance rejection with zero steady-state error for time delay systems," in Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China: IEEE, June 2006, pp. 511-515.
[4] K. J. Astrom and B. Wittenmark, Computer-controlled systems: Theory and Design, 3rd ed. Prentice Hall Information and Sstem Sciences Series, November 1996.
[5] D. W. Clarke and P. J. Gawthrop, "A self-tuning controller," IEEE Procedinng, vol. 122, 1975.
[6] ÔÇöÔÇö, "A self-tuning controller," IEEE Procedinng, vol. 126, 1979.
[7] S. Ertunc, B. Akay, H. Boyacioglu, and H. Hapoglu, "Self-tuning control of dissolved oxygen concentration in a batch bioreactor," Food and Bioproducts Processing, vol. 87, pp. 46-55, 2009.
[8] M. Sternad and A. Ahlen, Polynomial methods in optimal Control and filtering, ser. IEE Control Engineering. Peter Peregrinus Ltd., United Kingdom, 1993, no. 49, ch. LQ control design and self-tuning.
[9] A. Krishnan and M. Das, "Minimum variance & lqg control for active noise cancellation - a comparison," in Proc. 43rd IEEE Midwest Symp. on Circuits and Systems, 2000, pp. 1358-1361.
[10] A. J. Krener, "A brief tutorial on linear and nonlinear control theory," Department of Mathematics, University of California, Tech. Rep., n.d.
[11] M. E. Halpern, "Modified pole-assignment controller for plant models with exact or near pole-zero cancellation," IEE Proceeding, vol. 135, no. 3, pp. 189-195, 1988.
[12] R. Davies and M. B. Zarrop, "On reduced variance overparameterized pole assignment control," International Journal of Control, vol. 69, no. 1, pp. 131-144, 1998.