WASET
	%0 Journal Article
	%A Seok Hong Min and  Woo Young Jung and  Tae Kwon Ha
	%D 2013
	%J International Journal of Civil and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 74, 2013
	%T High Temperature Deformation Behavior of Cr-containing Superplastic Iron Aluminide
	%U https://publications.waset.org/pdf/6903
	%V 74
	%X Superplastic deformation and high temperature load
relaxation behavior of coarse-grained iron aluminides with the
composition of Fe-28 at.% Al have been investigated. A series of load
relaxation and tensile tests were conducted at temperatures ranging
from 600 to 850oC. The flow curves obtained from load relaxation
tests were found to have a sigmoidal shape and to exhibit stress vs.
strain rate data in a very wide strain rate range from 10-7/s to 10-2/s.
Tensile tests have been conducted at various initial strain rates ranging
from 3×10-5/s to 1×10-2/s. Maximum elongation of ~500 % was
obtained at the initial strain rate of 3×10-5/s and the maximum strain
rate sensitivity was found to be 0.68 at 850oC in binary Fe-28Al alloy.
Microstructure observation through the optical microscopy (OM) and
the electron back-scattered diffraction (EBSD) technique has been
carried out on the deformed specimens and it has revealed the
evidences for grain boundary migration and grain refinement to occur
during superplastic deformation, suggesting the dynamic
recrystallization mechanism. The addition of Cr by the amount of 5
at.% appeared to deteriorate the superplasticity of the binary iron
aluminide. By applying the internal variable theory of structural
superplasticity, the addition of Cr has been revealed to lower the
contribution of the frictional resistance to dislocation glide during high
temperature deformation of the Fe3Al alloy.
	%P 157 - 160