Molecular Dynamics Simulation of Thermal Properties of Au3Ni Nanowire
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Molecular Dynamics Simulation of Thermal Properties of Au3Ni Nanowire

Authors: J. Davoodi, F. Katouzi

Abstract:

The aim of this research was to calculate the thermal properties of Au3Ni Nanowire. The molecular dynamics (MD) simulation technique was used to obtain the effect of radius size on the energy, the melting temperature and the latent heat of fusion at the isobaric-isothermal (NPT) ensemble. The Quantum Sutton-Chen (Q-SC) many body interatomic potentials energy have been used for Gold (Au) and Nickel (Ni) elements and a mixing rule has been devised to obtain the parameters of these potentials for nanowire stats. Our MD simulation results show the melting temperature and latent heat of fusion increase upon increasing diameter of nanowire. Moreover, the cohesive energy decreased with increasing diameter of nanowire.

Keywords: Au3Ni Nanowire, Thermal properties, Molecular dynamics simulation

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1332766

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961

References:


[1] M. Nicholas, et al., "Ultrahigh-density nanowire lattices and circuits," Science, vol. 300, pp. 112-115, Apr. 2003.
[2] Y. Huang, X. Duan, and C. M. Lieber, "Nanowires for integrated multicolor nanophotonics," Small, vol. 1, pp. 142-147, Jan. 2005.
[3] Y. Wu, R. Fan, and P. Yang, "Block-by-block growth of singlecrystalline Si/SiGe superlattice nanowires," Nano Lett., vol. 2, pp. 83- 86, Jan. 2002.
[4] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, "DNAtemplated self-assembly of protein arrays and highly conductive nanowires," Science, vol. 301, pp. 1882-1884, Sep. 2003.
[5] S. J. A. Koh, H. P. Lee, C. Lu, and Q. H. Cheng, "Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: temperature and strain-rate effects," Phys. Rev. B, vol. 72, pp. 085414:1- 11, Aug. 2005.
[6] J. Zhou, C. Jin, J. H. Seol, X. Li, and L. Shi, "Thermoelectric properties of individual electrodeposited bismuth telluride nanowires ," Appl. Phys. Lett., vol. 87, pp. 133109:1-3, sep. 2005.
[7] L. Li, Y. Zhang, Y. W. Yang, X. H. Huang, G. H. Li, and L. D. Zhang, "Diameter-depended thermal expansion properties of Bi nanowire arrays," Appl. Phys. Lett., vol. 87, pp. 031912-031915, Jul. 2005.
[8] J. I. Pascual, et al., "Properties of metallic nanowires: from conductance quantization to localization," Science, vol. 267, pp. 1793-1795, Mar. 1995.
[9] T. M. Whitney, J. S. Jiang, P. C. Searson, and C. L. Chien, "Fabrication and magnetic properties of arrays of metallic nanowires," Science, vol. 261, pp. 1316-1319, Jul. 1993.
[10] C. A. Huber, et al., "Nanowire array composites," Science, vol. 263, pp. 800-802, Feb. 1994.
[11] Q. XU, et al., "Synthesis of AuNi/NiO nanocables by porous AAO template assisted galvanic preposition and subsequent oxidation," Eur. J. Inorg. Chem., vol. 2010, pp. 4309-4313, Sep. 2010.
[12] E. Anglada, J. A. Torres, F. Yndurain, and J. M. Soler, "Formation of gold nanowires with impurities: a first-principles molecular dynamics simulation," Phys. Rev. Lett., vol. 98, pp. 096102-096106, Feb. 2007.
[13] X. Y. Zhang, L. D. Zhang, Y. Lei, L. X. Zhao, and Y. Q. Mao, "Fabrication and characterization of highly ordered Au nanowire arrays," J. Mater. Chem., vol. 11, pp. 1732-1734, Apr. 2001.
[14] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, "Molecular dynamics with coupling to an external bath," J. Chem. Phys., vol. 81, pp. 3684-3690, Jun. 1984.
[15] J. M. Haile, Molecular Dynamics Simulation, John Wiley & Sons, New York, 1992, pp. 138.
[16] H. H. Kart, M. Tomak, M. Uludogan, and T. Cagin, "Thermodynamical and mechanical properties of Pd-Ag alloys," Comput. Mat. Sci., vol. 32, pp. 107-117, Jan. 2005.
[17] Y. Qi, T. Cagin, Y. Kimura, and W.A. Goddard, "Molecular-dynamics simulation of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni," Phys. Rev. B, vol. 59, pp. 3527-3533, Feb. 1999.
[18] W. G. Hoover, "Canonical dynamics: equilibrium phase-space distributions," Phys. Rev. A, vol. 31, pp. 1695-1697, Mar. 1985.
[19] S. Nose, "A unified formulation of the constant temperature molecular dynamics methods," J. Chem. Phys., vol. 81, pp. 511-519, Jul. 1984.
[20] A. P. Sutton, J. B. Pethica, H. Rafii-Tabar, and J. A. Nieminen, "Mechanical properties of metals at the nanometer scale," in Electron theory in alloy design, D. G. Pettifor, and A. H. Cottrell, Ed. Institute of Materials, The Alden Pres, Oxford, 1992, pp. 191-233.