Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30464
Modelling and Analysis of a Robust Control of Manufacturing Systems: Flow-Quality Approach

Authors: ACHRAF JABEUR TELMOUDI, Lotfi Nabli, Radhi M'hiri

Abstract:

This paper proposes a modeling method of the laws controlling manufacturing systems with temporal and non temporal constraints. A methodology of robust control construction generating the margins of passive and active robustness is being elaborated. Indeed, two paramount models are presented in this paper. The first utilizes the P-time Petri Nets which is used to manage the flow type disturbances. The second, the quality model, exploits the Intervals Constrained Petri Nets (ICPN) tool which allows the system to preserve its quality specificities. The redundancy of the robustness of the elementary parameters between passive and active is also used. The final model built allows the correlation of temporal and non temporal criteria by putting two paramount models in interaction. To do so, a set of definitions and theorems are employed and affirmed by applicator examples.

Keywords: Quality, Robustness, Petri nets, redundancy, Flow, Manufacturing systems control

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1332546

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366

References:


[1] ARTEMIS-IMAG, ERIHST, LAG, LAMII-CESALP, CORINE "COnduite Robuste et INtelligente dans les Entreprises manufacturi`eres", Technique Report, May 1996.
[2] P. Bonhomme, P. Aygalinc, S. Calvez, Using robustness properties for multi-products processing, IFAC/IFIP/IEEE, 2nd Conference on Management and Control of Production and Logistics, (MCPL-2000), Grenoble, 5-8 July 2000.
[3] P. Bonhomme, Control of time critical systems using partial order, 23rd International Modal Analysis Conference (IMAC -05), Paris, 5-8 July 2005.
[4] P. Bonhomme, Control and performances evaluation of time dependent systems using an enumerative approach, International Conference on Control Applications, (CCA -06), Paris, July 2006.
[5] A. Boufaied, A. Subias et M. Combacau, Distributed time constraints verification modelled with time Petri Nets, 17th IMACS Word Congress on Scientific Computation, Applied Mathematics and Simulation, Paris, CD ROM, July 2005.
[6] F. Chetouane, S. Collart Dutilleul, J. P. Denat, Modeling and analysis of time constraints using P-Time Petri Nets for a multi-hoist electroplating line, 3rd Conference on Management and Control of Production and Logistics (MCPL-2004), Santiago, pp. 279-284, November 2004
[7] S. Collart Dutilleul , H. Dhouibi, E. Craye, Tolerance analysis approach with interval constrainted Petri nets, ESMc 2004 conference, Paris, 2004.
[8] S. Collart Dutilleul , H. Dhouibi, E. Craye, Internal robustness of discret event system with internal constraints in repetitive functionning mode, ACS-2003 congres, Miedzyzdroje, Poland, 2003.
[9] S. Collart Dutilleul, Commande robuste d-ateliers `a contraintes de temps de s'ejour : application `a la galvanoplastie, Ph.D. Thesis,Universit'e de Savoie, december 1997.
[10] S. Collart Dutilleul, J. P. Denat, W. Khansa, Commande robuste d-un atelier flot sans stocks et sans attentes, Automatique, Informatique Industrielle (APII), vol. 28, number 6, 1994.
[11] H. Dhouibi ,S. Collart Dutilleul , E.Craye, L. Nabli, Computing intervals of Intervals Constrainted Petri Net: a tobacco manufacturing application, IMACS -05, Paris, July 05.
[12] H. Dhouibi, Utilisation des R'eseaux de Petri `a Intervalles pour la r'egulation d-une qualit'e : application une manufacture de tabac, h.D. Thesis,Ecole Centrale de Lille , December 2005.
[13] N. Jerbi, S. Collart Dutilleul, E. Craye, M. Benrejeb, Time disturbances and filtering of sensors signals in tolerant multi-product job-shops with Time Constraints, International Journal of Computers, Communications control, Vol. I, number 4, pp. 61-72, 2006.
[14] W. Khansa, R'eseaux de Petri P-temporels: contribution `a l-'etude des syst m` es a` e've'nements Discrets, Ph.D. Thesis,Universite' de Savoie, France, March 1997.
[15] W. Khansa, P. Aygalinc, J. P. Denat, Structural analysis of P-time Petri Nets, Computational Engineering in Systems Applications (CESA96), Lille, France, pp. 127-136, July 1996.
[16] J. Long, B. Descotes-Genon, Flow optimization method for control synthesis of flexible manufacturing systems modeled by controlled Timed Petri Nets, IEEE International Conference on Robotics and Automation, Atlanta, Georgia, USA, Vol. 1, pp. 598-603, May 1993.