Modification and Characterization of Bacterial Cellulose Biopolymer as Proton Conducting Membrane
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Modification and Characterization of Bacterial Cellulose Biopolymer as Proton Conducting Membrane

Authors: C. W. Lin, S.W. Chen

Abstract:

This study describes the preparation of a novel proton conducting membranes based on bacterial cellulose (BC) modified by grafting of 2-acrylamido-2-methyl-1 -propanesulfonic acid (AMPS) through UV-induced graft polymerization. These AMPS-g-BC membranes have been characterized by various techniques including FTIR, SEM and TGA, to find their successful grafting of AMPS on BC, surface morphology and thermal stability, respectively. Physical properties of AMPS-g-BC membranes have been assessed in terms of Lamda value( λ ), ion exchange capacity(IEC) and proton conductivity. The relationship between degree of grafting and AMPS concentration used for grafting has been determined by weight gain method. An optimum proton conductivity equal to 2.89x10-2 S cm-1 and IEC value equal to 1.79 mmol g-1 have been obtained when 20 wt% AMPS concentration is used for grafting (i.e. the corresponding membrane is notated as AMPS20-g-BC).

Keywords: Bacterial cellulose, 2-acrylamido-2-methyl-1-propanesulfonic acid, Proton conducting membrane, Self diffusioncoefficient, Fuel cell

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1063445

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218

References:


[1] O. D. Klemm, D. Schumann, U. Udhardt, S. Marsch, Prog. Polym. Sci. 26 (2001) 1561-1603.
[2] A. Svensson, E. Nicklasson, T. Harrah, B. Panilaitis, D. Kaplan, M. Brittberg. P. Gatenholm, Biomaterials 26 (2005) 419-431.
[3] J. George, K.V. Ramana, S.N. Sabapathy, J.H. Jagannath, A.S. Bawa Journal of Biological Macromolecules 37 (2005) 189-194.
[4] Y. Wan, K.A.M. Creber, B. Peppley, V.T. Bui, J. Membr. Sci. 280 (2006) 666-674.
[5] B.R. Evans, H.M. O'Neill, V.P. Malyvanh, I. Lee, J. Woodward, Biosensors and Bioelectronics, 18 (2003) 917-923.
[6] K. Brajter, K. Slonawska, Anal Chim Acta 185 (1986) 271-277.
[7] W. Li, H. Zhao, PR. Teasdale, R. John S. Zhang, Anal Chim Acta 464 (2002) 331-339.
[8] J. Yang, D. Sun, J. Li , X. Yang, J. Yu, Q. Hao, W. Liu, J. Liu, Z. Zou, J. Gu, Electrochimica Acta 54 (2009) 6300-6305.
[9] O.A. Kazantsev, A.V. Igolkin, K.V. Shirshin, N.A. Kuznetsova, A.N. Spirina, A.P. Malyshev, Russ. J. Appl. Chem.75 (2002) 465-469.
[10] C.W. Walker Jr., J. Power Sources 110 (2002) 144-151.
[11] J. Qiao, T. Hamaya, T. Okada, J. Mater. Chem., 15 (2005) 4414-4423
[12] L.E. Karlsson, B. Wessle'n, P. Jannasch, Electrochimica Acta 47 (2002) 3269-3275.
[13] P.A. Dworjanyn, J.L. Garnett, J. Polym. Chem. Polym. Lett. Ed. 26 (1988) 135-138.
[14] J.R. Hollahan, Plasma Chemistry Industrial Application, Wiley, New York, 1974
[15] C.A. Wilkie, C. Deacon, Graft copolymerization of acrylic acid on to acrylonitrile-butadienestyrene terpolymer and thermal analysis of the copolymers, Eur. Polym. J. 32 (1996) 451-455.
[16] S. Hasegawa, Y. Suzuki, Y. Maekawa, Radiat. Phys. Chem. 77 (2008) 617-621.
[17] M.M. Nasef, J. Appl. Polym. Sci. 77 (2000) 1003-1012.
[18] E. O. Stejskal, J. E. Tanner, J Chem Phys 43 (1965) 3597-3603.
[19] A. M. Kannan, A. Menghal, I.V. Barsukov Electrochemistry Communications 8 (2006) 887-891
[20] G. Oster, O. Shibata, J Polym Sci 26 (1957) 233-234.
[21] K. Watanabe, Y. Eto, S. Takano, S. Nakamori, H. Shibai, S. Yoshinaka, Cytotechnol 13 (1993) 107-114.
[22] Y. Choi, Y. Ahn, M. Kang, H. Jun, I. Kim, S. Moon, J Chem Technol Biotechnol 79 (2004) 79-84.
[23] M. Roman, W.T. Winter, Biomacromolecules 5( 2004) 1671-1677