WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/6192,
	  title     = {Spiral Cuff for Fiber-Diameter Selective VNS},
	  author    = {P. Pečlin and  J. Rozman},
	  country	= {},
	  institution	= {},
	  abstract     = {In this paper we present the modeling, design, and
experimental testing of a nerve cuff multi-electrode system for
diameter-selective vagus nerve stimulation.
The multi-electrode system contained ninety-nine platinum
electrodes embedded within a self-curling spiral silicone sheet. The
electrodes were organized in a matrix having nine parallel groups,
each containing eleven electrodes.
Preliminary testing of the nerve cuff was performed in an isolated
segment of a swinish left cervical vagus nerve. For selective vagus
nerve stimulation, precisely defined current quasitrapezoidal,
asymmetric and biphasic stimulating pulses were applied to
preselected locations along the left vagus segment via appointed
group of three electrodes within the cuff. Selective stimulation was
obtained by anodal block. However, these pulses may not be safe for
a long-term application because of a frequently used high imbalance
between the cathodic and anodic part of the stimulating pulse.
Preliminary results show that the cuff was capable of exciting A
and B-fibres, and, that for a certain range of parameters used in
stimulating pulses, the contribution of A-fibres to the CAP was
slightly reduced and the contribution of B-fibres was slightly larger.
Results also showed that measured CAPs are not greatly
influenced by the imbalance between a charge Qc injected in cathodic
and Qa in anodic phase of quasitrapezoidal, asymmetric and biphasic
pulses.},
	    journal   = {International Journal of Biomedical and Biological Engineering},
	  volume    = {5},
	  number    = {11},
	  year      = {2011},
	  pages     = {566 - 569},
	  ee        = {https://publications.waset.org/pdf/6192},
	  url   	= {https://publications.waset.org/vol/59},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 59, 2011},
	}