WASET
	%0 Journal Article
	%A E. Neamatollahi and  M. Bannayan and  A. Souhani Darban and  A. Ghanbari
	%D 2009
	%J International Journal of Agricultural and Biosystems Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 33, 2009
	%T Hydropriming and Osmopriming Effects on Cumin(Cuminum Cyminum L.) Seeds Germination
	%U https://publications.waset.org/pdf/6065
	%V 33
	%X In production of medicinal plants, seed germination is
very important problem. The treated seeds (control, hydro priming
and ZnSO4) of Cumin (Cuminum cyminum L.) were evaluated at
germination and seedling growth for tolerance to salt (NaCl and
Na2SO4) conditions at the same water potentials of 0.0, -0.3, -0.6, -
0.9 and -1.2MPa. Electrical conductivity (EC) values of the NaCl
solutions were 0.0, 6.5, 12.7, 18.4 and 23.5 dSm-1, respectively. The
objective of the study was to determine factors responsible for
germination and early seedling growth due to salt toxicity or osmotic
effect and to optimize the best priming treatment for these stress
conditions. Results revealed that germination delayed in both
solutions, having variable germination with different priming
treatments. Germination, shoot and weight, root and shoot length
were higher but mean germination time and abnormal germination
percentage were lower in NaCl than Na2SO4 at the same water
potential. The root / shoot weight and R/S length increased with
increase in osmotic potential in both NaCl and Na2SO4 solutions.
NaCl had less inhibitor effect on seedling growth than the
germination. It was concluded that inhibition of germination at the
same water potential of NaCl and Na2SO4 resulted from salt toxicity
rather than osmotic effect. Hydro priming increased germination and
seedling growth under salt stress. This protocol has practical
importance and could be recommended to farmers to achieve higher
germination and uniform emergence under field conditions.
	%P 477 - 480