Synthesis and Characterization of ZnO and Fe3O4 Nanocrystals from Oleat-based Organometallic Compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Synthesis and Characterization of ZnO and Fe3O4 Nanocrystals from Oleat-based Organometallic Compounds

Authors: PoiSim Khiew, WeeSiong Chiu, ThianKhoonTan, Shahidan Radiman, Roslan Abd-Shukor, Muhammad Azmi Abd-Hamid, ChinHua Chia

Abstract:

Magnetic and semiconductor nanomaterials exhibit novel magnetic and optical properties owing to their unique size and shape-dependent effects. With shrinking the size down to nanoscale region, various anomalous properties that normally not present in bulk start to dominate. Ability in harnessing of these anomalous properties for the design of various advance electronic devices is strictly dependent on synthetic strategies. Hence, current research has focused on developing a rational synthetic control to produce high quality nanocrystals by using organometallic approach to tune both size and shape of the nanomaterials. In order to elucidate the growth mechanism, transmission electron microscopy was employed as a powerful tool in performing real time-resolved morphologies and structural characterization of magnetic (Fe3O4) and semiconductor (ZnO) nanocrystals. The current synthetic approach is found able to produce nanostructures with well-defined shapes. We have found that oleic acid is an effective capping ligand in preparing oxide-based nanostructures without any agglomerations, even at high temperature. The oleate-based precursors and capping ligands are fatty acid compounds, which are respectively originated from natural palm oil with low toxicity. In comparison with other synthetic approaches in producing nanostructures, current synthetic method offers an effective route to produce oxide-based nanomaterials with well-defined shapes and good monodispersity. The nanocystals are well-separated with each other without any stacking effect. In addition, the as-synthesized nanopellets are stable in terms of chemically and physically if compared to those nanomaterials that are previous reported. Further development and extension of current synthetic strategy are being pursued to combine both of these materials into nanocomposite form that will be used as “smart magnetic nanophotocatalyst" for industry waste water treatment.

Keywords: Metal oxide nanomaterials, Nanophotocatalyst, Organometallic synthesis, Morphology Control

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061838

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529

References:


[1] Wang, J., Gudiksen, M.S., Duan, X., Cui, Y., Lieber, C.M., (2001) "Highly polarized photoluminescence and photodetection from single indium phosphide nanowires", Science, 293, 1455-1457.
[2] Zhong, Z., Qian, F., Wang, D., Lieber, C.M., (2003) "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices", Nanoletters, 3 (3), 343-346.
[3] Hahm, J., Lieber, C.M., (2004) "Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors", Nanoletters, 4 (1), 51-54.
[4] Alivisatos, A.P., (1996) "Semiconductor clusters, nanocrystals, and quantum dots", Science, 271, 933-937.
[5] Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A., (2005) "Chemistry and properties of nanocrystals of different shapes", Chem. Rev., 105, 1025-1102.
[6] Zhitenev, N.B., Fulton, T.A., Yacob, A., Hess, H.F., Pfeiffer, L.N., West, K.W., (2000) "Imaging of localized electronic states in the quantum Hall regime", Nature, 404, 473-476.
[7] Suen, Y.W., Engel, L.W., Santos, M.B., Shayegan, M., Tsui D.C., (1992) "Observation of a ˆI› = 1/2 fractional quantum Hall state in a double-layer electron system", Phys. Rev. Lett., 68, 1379-1382.
[8] Stormer, H.L., (1998) "Fractional quantum Hall effect today", Solid State Commun., 107, 617-620.
[9] Stormer, H.L., Du, R.R., Kang, W., Tsui, D.C., Peeiffer, L.N., Baldwin, K.W., West, K.W., (1994) "The fractional quantum Hall effect in a new light", Semicond. Sci. Technol., 9, 1853-1858.
[10] Wang, Z.L., (2004) "Nanostructures of zinc oxide", Mater. Today, 7 (6), 26-33.
[11] Cao, H., Xu, J.Y., Zhang, D.Z., Chang, S.H., Ho, S.T., Seelig, E.W., Liu, X., Chang, R.P.H., (2000) "Spatial confinement of laser light in active random media", Phys. Rev. Lett., 84, 5584-5587.
[12] Bagnall, D.M., Chen, Y.F., Zhu, Z., Yao, T., Koyama, S., Shen, M.Y., Goto, T., (1997) "Optically pumped lasing of ZnO at room temperature", Appl. Phys. Lett., 70, 2032-2230.
[13] Yu, P., Tang, Z.K., Wong, K.L., Kawasaki, M., Ohtomo, A., Koinuma, H., Segawa, Y., (1998) "Room-temperature gain spectra and lasing in microcrystalline ZnO thin films", J. Cryst. Growth, 184/185, 601-604.
[14] Kayamura, Y., (1988) "Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape", Phys. Rev. B, 38, 9797-9805.
[15] Wegscheider, W., Pfeiffer, L.N., Dignam, M.M., Pinczuk, A. W., West, K., McCall, S.L., Hull, R., (1993) "Lasing from excitons in quantum wires", Phys. Rev. Lett., 71, 4071-4074.
[16] Garcia, M.A., Merino, J.M., Pinel, E.F., Quesada, A., Venta, J., Gonzalez, M.L.R., Castro, G.R., Crespo, P., Llopis, J., G-Calbet, J.M., Hernando, A., (2007) "Magnetic properties of ZnO nanoparticles", Nanoletters, 7, 1489-1494.
[17] Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P., (2001) "Room-temperature ultraviolet nanowire nanolasers", Science, 292, 1879-1897.
[18] Wang, X., Song, J., Liu, J., Wang, Z.L., (2007) "Direct-current nanogenerator driven by ultrasonic waves", Science, 316, 102-105.
[19] Yang, P., (2005) "The chemistry and physics of semiconductor nanowires", Mater. Res. Bull., 30, 85-91.
[20] Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G., Yang P., (2005) "General route to vertical ZnO nanowire arrays using textured ZnO seeds", Nanoletters, 5 (7), 1231-1236.
[21] Shen, G., Cho, J.H., Yoo, J.K., Yi, G.C., Lee, C.J., (2005) "Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires", J. Phys. Chem. B, 109, 5491-5496.
[22] Garti, N., Aserin, A., Tiunova, I., Fanun, M., (2000) "A DSC study ofwater behavior inwaterin-oil microemulsions stabilized by sucrose esters and butanol", Colloid Surf. A, 170, 1-18.
[23] Khiew, P.S., Huang, N.M., Radiman, S., Ahmad, M.S., (2004) "Synthesis of NiS nanoparticles using a sugar-ester nonionicwater-in-oil microemulsion", Mater. Lett., 58, 516-521.
[24] Khiew, P.S., Radiman, S., Huang, N.M., Ahmad, M.S., (2005) "Preparation and characterization of ZnS nanoparticles synthesized from chitosan laurate micellar solution", Mater. Lett., 59, 989-993.
[25] Huang, N.M., Radiman, S., Khiew, P.S., Laggner, P., Kan, C.S., (2004) "In situ templating of PbS nanorods in reverse hexagonal liquid crystal", Colloids Surf. A, 247, 55-60.
[26] Khiew, P.S., Radiman, S., Huang, N.M., Ahmad, M.S., (2004) "Synthesis and characterization of copper sulfide nanoparticles in hexagonal phase lyotropic liquid crystal", J. Cryst. Growth, 268, 227-237.
[27] Khiew, P.S., Radiman, S., Huang, N.M., Ahmad, M.S., (2003) "Studies on the growth and characterization of CdS and PbS nanoparticles using sugar-ester nonionic water-in-oil microemulsion", J. Cryst. Growth, 254, 235-243.
[28] Khiew, P.S., Radiman, S., Huang, N.M., Ahmad, M.S., (2004) "In situ polymerization of conducting polyaniline in bicontinuous cubic phase of lyotropic liquid crystal", Colloids Surf. A-Physicochem. Eng. Asp., 247, 35-40.
[29] Huang, N.M., Kan, C.S., Khiew, P.S., Radiman, S., (2004) "Single w/o microemulsion templating of CdS nanoparticles", J. Mater. Sci., 39, 2411-2415.
[30] Khiew, P.S., Huang, N.M., Radiman, S., Ahmad, M.S., (2004) "Synthesis of NiS nanoparticles using a sugar-ester nonionicwater-in-oil microemulsion", Mater. Lett., 58 , 762-767.
[31] Chiu, W. S., Khiew, P. S., Isa, D., Cloke, M., Radiman, S., Abd-Shukor, R., Abdullah, M. H., Huang, N. M. (2008) "Synthesis of two-dimensional ZnO nanopellets by pyrolysis of zinc oleate" Chem. Eng. J., 142(3), 337-343.
[32] Hirano, S., Masuya, K., Kuwabara, M., (2004) "Multi-nucleation-based formation of oriented zinc oxide microcrystals and films in aqueous solutions", J. Phys. Chem. B, 108, 4576-4578.
[33] Kuo, C.L., Kuo, T.J., Huang, M.H., (2005) "Hydrothermal synthesis of ZnO microspheres and hexagonal microrods with sheetlike and platelike nanostructures", J. Phys. Chem. B, 109 (43), 20115-20121.
[34] Yoshida, T., Tochimoto, M., Schlettwein, D., Wohrle, D., Sugiura, T., Minoura, H., (1999) "Self-assembly of zinc oxide thin films modified with tetrasulfonated metallophthalocyanines by one-step electrodeposition", Chem. Mater., 11, 2657-2667.
[35] Pinna, N., Weiss, K., Kongehl, H.S., Vogel, W., Urban, J., Pileni, M.P., (2001) "Triangular CdS nanocrystals: synthesis, characterization, and stability", Langmuir, 17, 7982-7987.
[36] Fons, P., Tampo, H., Kolobov, A.V., Ohkubo, M., Niki, S., Tominaga, J., Carboni, R., Boscherini, F., Friedrich, S., (2006) "Direct observation of nitrogen location in molecular beam epitaxy grown nitrogen-doped ZnO", Phys. Rev. Lett., 96, 045504-045505.
[37] Chiu, W.S., Radiman, S., Abdullah, M.H., Khiew, P.S., Huang, N.M., Abd-Shukor, R., (2007) "One pot synthesis of monodisperse Fe3O4 nanocrystals by pyrolysis reaction of organometallic compound", Mater. Chem. Phys., 106, 231-235.
[38] Peng, X., (2003) "Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals", Adv. Mater., 15 (5), 459-463.
[39] Yu, W.W., Wang, Y.A., Peng, X., (2003) "Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals", Chem. Mater., 15, 4300-4308.
[40] Yu, W.W., Peng, X., (2002) "Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers", Angew. Chem. Int. Ed., 41 (13), 2368-2371.
[41] Wang, Z.L., Kong, X.Y., Zuo, J.M., (2003) "Induced growth of asymmetric nanocantilever arrays on polar surfaces-, Phys. Rev. Lett., 91 (18), 185502-185505.
[42] Chiu, W.S., Radiman, S., Abd-Shukor, R., Abdullah, M.H., Khiew, P.S., (2008) "Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment", J. Alloy Comp., 459, 291-297.
[43] Bovin, J.O., Wallember, R.L., Smith, D., (1985) "Imaging of atomic clouds outside the surfaces of gold crystals by electron microscopy", Nature, 317, 47-49.
[44] Iijima, S., Ichihashi, H., (1986) "Structural instability of ultrafine particles of metals", Phys. Rev. Lett., 56, 616-619.
[45] Zhu, H., Averback R.S., (1996) "Sintering processes of two nanoparticles: a study by molecular dynamics simulations", Philos. Magn. Lett., 73, 27-33.
[46] Wiley, B.J., Im, S.H., Li, Z.Y., McLellan, J., Siekkinen, A., Xia, Y., (2006) "Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis", J. Phys. Chem. B, 110, 15666-15675.
[47] Kelly, K.L., Corondo, E., Zhao, L.L., Sxhatz, G.C., (2003) "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment", J. Phys. Chem. B, 107, 668-677.
[48] Joint Committee for Powder Diffraction Society (JCPDS), Powder Diffraction Database, pattern: 36-1451.
[49] Yeh, C.Y., Lu, Z.W., Froyen, S., Zunger, A., (1992) "Zinc-blende? wurtzite polytypism in semiconductors", Phys. Rev. B, 46, 10086-10097.
[50] Yeh, C.Y., Wei, S.H., Zunger, A., (1994) "Relationships between the band gaps of the zincblende and wurtzite modifications of semiconductors", Phys. Rev. B, 50, 2715-2718.
[51] Serrano, J., Romero, A.H., Manjon, F.J. ', Lauck, R., Cardona, M., Rubio, A., (2004) "Pressure dependence of the lattice dynamics of ZnO: an ab initio approach", Phys. Rev. B, 69, 094306-094319.
[52] Shackelford, J.F., Introduction toMaterial Science for Engineers, 6th ed., Pearson-Prentice Hall, USA, 2004, p. 106.
[53] Yeh, C.Y., Wei, S.H., Zunger, A., (1994) "Relationships between the band gaps of the zincblende and wurtzite modifications of semiconductors", Phys. Rev. B, 50, 2715-2718.