Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30458
The Effects of Tissue Optical Parameters and Interface Reflectivity on Light Diffusion in Biological Tissues

Authors: MA. Ansari

Abstract:

In cancer progress, the optical properties of tissues like absorption and scattering coefficient change, so by these changes, we can trace the progress of cancer, even it can be applied for pre-detection of cancer. In this paper, we investigate the effects of changes of optical properties on light penetrated into tissues. The diffusion equation is widely used to simulate light propagation into biological tissues. In this study, the boundary integral method (BIM) is used to solve the diffusion equation. We illustrate that the changes of optical properties can modified the reflectance or penetrating light.

Keywords: Diffusion Equation, refractive index, boundary element method

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061543

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642

References:


[1] Sadoghi, P (2007) Influence of scattering, tissue optical parametres and interface reflectivities on photon migration in human tissue .J Mod Opt. 54: 845-854.
[2] Neimz NH. Laser- tissue Interaction: Fundamentals and Applications. New York: Springer- Verlag; 2003.
[3] Sadoghi P(2006) Discrete ordinates method for propagation of light in highly scattering vascular tissues .Opt Commun. 266: 363 -359.
[4] . Arridge SR, Hebden JC (1997) Optical imaging in medicine: II. Modelling and reconstruction .Phys Med Bio. 42: 841-853.
[5] Arridge SR, Dehghani H, Schweiger M, Okada E (2000) The finite element model for the propagation of light in scattering media:A direct method for domains with nonscattering regions .Med Phys. 27: 256-264.
[6] Cheong WF, Prahl SA, Welch AJ (1990) A Review of the Optical Properties of Biological Tissues. IEEE J QUANTUM ELECT. 26: 2166- 2185.
[7] Welch AJ, Gardner C, Richards-Kortum R, Criswell G, Pfefer J, Warren S (1997) Propagation of fluorescent light. Laser Surg Med. 21: 166-178.
[8] Yicong Wu, Peng Xi, Jianan Qu, Tak-Hong Cheung, and Mei-Yung Yu, (2005) Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue. Opt Express 13: 382-388.
[9] Arridget SR, Copet M, Delpy DT(1992) The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis .Phys Med Biol. 37: 1531-1560.
[10] N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm, J. Phys. D: Appl. Phys. 38 (2005) 2543-2555.
[11] S. W. Lanigan, Lasers in dermatology, Springer, London, 2000.
[12] R. Young, Chromophores in human skin, Phys. Med. Biol. 42 (1997) 789-802.
[13] S. L. Jacques, D. J. McAuliffe, The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation, Photochem. Photobiol. 53 (1991) 769-775.
[14] E. Claridge, D. Hidovic- Rowe, P. Taniere, T. Ismail, Quantifying mucosal blood volume fraction from multispectral images of the colon, Proc. SPIE. 6511 (2007) 17-22.
[15] R. Yip, Significance of an abnormally low or high hemoglobin concentration during pregnancy: special consideration of iron nutrition, Am. J. Clin. Nutr. 72 (2000) 272S-279S.
[16] S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, A Finiteelement approach for modeling photon transport in tissue, Med. Phys. 20 (1993) 299-309.
[17] M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, The finite element method for propagation of light in scattering media: Boundary and source condition, Med. Phys. 22 (1995) 1779- 1792.
[18] H. Hielscher, R. E. Alcouffe, R. L. Barbour, Comparison of finitedifference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues, Phys. Med. Biol. 43 (1998) 1285-1302.
[19] B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, K. D.Paulsen, Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction, Appl. Opt. 40 (2001) 588-600.
[20] S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, A Monte Carlo model of light propagation in tissue, Proc. SPIE. IS 5 (1989) 102-111.
[21] L. Wang, S. L. Jacques, L. Zheng, MCML: Monte Carlo modeling of photon propagation in multi-layered tissues, Comput. Meth. Programs. Biomed. 47 (1995) 131-146.
[22] S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, Monte Carlo modeling of light propagation in highly scattering tissue. I. Model predictions and comparison with diffusion theory, IEEE. Trans. Biomed. Eng. 36 (1989) 1162-1168.
[23] J. Welch, C. Gardner, R. Richards-Kortum, E. Chan,G. Criswell, J. Pfefer, S. Warren, Propagation of fluorescent light, Lasers. Surg. Med. 21 (1997) 166-178.
[24] Ansari MA, Massudi R, Hejazi M (2009) Experimental and numerical study on simultaneous effects of scattering and absorption on fluorescence spectroscopy of a breast phantom. Opt Laser Technol 41: 746-750.
[25] David Boas, J. Culver, J. Stott, and A. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Express 10, 159-170 (2002)
[26] Ansari MA, Massudi R (2009) Study of light propagation in Asian and Caucasian skins by means of the boundary element method. Opt Laser Eng 47: 965-970.
[27] J. Welch , M. V. C. Gemert. Optical- Response of Laser-Irradiated Tissue. Springer; 1th ed;1995.
[28] L. V. Wang, H. I. Wu, Biomedical optics: principles and imaging, Wiley-Interscience, New Jersey, 2007.