Discrete Particle Swarm Optimization Algorithm Used for TNEP Considering Network Adequacy Restriction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Discrete Particle Swarm Optimization Algorithm Used for TNEP Considering Network Adequacy Restriction

Authors: H. Shayeghi, M. Mahdavi, A. Kazemi

Abstract:

Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, transmission expansion planning considering network adequacy restriction has not been investigated. Thus, in this paper, STNEP problem is being studied considering network adequacy restriction using discrete particle swarm optimization (DPSO) algorithm. The goal of this paper is obtaining a configuration for network expansion with lowest expansion cost and a specific adequacy. The proposed idea has been tested on the Garvers network and compared with the decimal codification genetic algorithm (DCGA). The results show that the network will possess maximum efficiency economically. Also, it is shown that precision and convergence speed of the proposed DPSO based method for the solution of the STNEP problem is more than DCGA approach.

Keywords: DPSO algorithm, Adequacy restriction, STNEP.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061432

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498

References:


[1] A. R. Abdelaziz, Genetic algorithm-based power transmission expansion planning, Proc. the 7th IEEE International Conference on Electronics, Circuits and Systems, Jounieh, Vol. 2, December 2000, pp. 642-645.
[2] V. A. Levi, M. S. Calovic, Linear-programming-based decomposition method for optimal planning of transmission network investments, IEE Proc. Generation, Transmission and Distribution, Vol. 140, No. 6, 1993, pp. 516-522.
[3] S. Binato, G. C. de Oliveira, J. L. Araujo, A greedy randomized adaptive search procedure for transmission expansion planning, IEEE Trans. Power Systems, Vol. 16, No. 2, 2001, pp. 247-253.
[4] J. Choi, T. Mount, R. Thomas, Transmission system expansion plans in view point of deterministic, probabilistic and security reliability criteria, Proc. the 39th Hawaii International Conference on System Sciences, Hawaii, Vol. 10, Jan. 2006, pp. 247b-247b.
[5] I. D. J. Silva, M. J. Rider, R. Romero, C. A. Murari, Transmission network expansion planning considering uncertainness in demand, Proc. 2005 IEEE Power Engineering Society General Meeting, Vol. 2, pp. 1424-1429.
[6] S. Binato, M. V. F. Periera, S. Granville, A new Benders decomposition approach to solve power transmission network design problems, IEEE Trans. Power Systems, Vol. 16, No. 2, 2001, pp. 235-240.
[7] L. L. Garver, Transmission net estimation using linear programming, IEEE Trans. Power Apparatus and Systems, Vol. PAS-89, No. 7, 1970, pp. 1688-1696.
[8] T. Al-Saba, I. El-Amin, The application of artificial intelligent tools to the transmission expansion problem, Electric Power Systems Research, Vol. 62, No. 2, 2002, pp. 117-126.
[9] R. Chaturvedi, K. Bhattacharya, J. Parikh, Transmission planning for Indian power grid: a mixed integer programming approach, International Trans. Operational Research, Vol. 6, No. 5, 1999, pp. 465-482.
[10] J. Contreras, F. F. Wu, A kernel-oriented algorithm for transmission expansion planning, IEEE Trans. Power Systems, Vol. 15, No. 4, 2000, pp. 1434-1440.
[11] R. A. Gallego, A. Monticelli, R. Romero, Transmission system expansion planning by an extended genetic algorithm, IEE Proc. Generation, Transmission and Distribution, Vol. 145, No. 3, 1998, pp. 329-335.
[12] R. A. Gallego, R. Romero, A. J. Monticelli, Tabu search algorithm for network synthesis, IEEE Trans. Power Systems, Vol. 15, No. 2, 2000, pp. 490-495.
[13] K. J. Kim, Y. M. Park, K. Y. Lee, Optimal long-term transmission expansion planning based on maximum principle, IEEE Trans. Power Systems, Vol. 3, No. 4, 1988, pp. 1494-1501.
[14] G. Liu, H. Sasaki, N. Yorino, Application of network topology to long range composite expansion planning of generation and transmission lines, Electric Power Systems Research, Vol. 57, No. 3, 2001, pp. 157- 162.
[15] M. V. F. Periera, L. M. V. G. Pinto, Application of sensitivity analysis of load supplying capacity to interactive transmission expansion planning, IEEE Trans. Power Apparatus and Systems, Vol. PAS-104, 1985, pp. 381-389.
[16] R. Romero, R. A. Gallego, A. Monticelli, Transmission system expansion planning by simulated annealing, IEEE Trans. Power Systems, Vol. 11, No. 1, 1996, pp. 364-369.
[17] R. Romero, A. Monticelli, A hierarchical decomposition approach for transmission network expansion planning, IEEE Trans. Power Systems, Vol. 9, No. 1, 1994, pp. 373-380.
[18] R. Romero, A. Monticelli, A zero-one implicit enumeration method for optimizing investments in transmission expansion planning, IEEE Trans. Power Systems, Vol. 9, No. 3, 1994, pp. 1385-1391.
[19] H. Samarakoon, R. M. Shrestha, O. Fujiwara, A mixed integer linear programming model for transmission expansion planning with generation location selection, Electrical Power and Energy Systems, Vol. 23, No. 4, 2001, pp. 285-293.
[20] E. L. da Silva, H. A. Gil, J. M. Areiza, Transmission network expansion planning under an improved genetic algorithm, IEEE Trans. Power Systems, Vol. 15, No. 3, 2000, pp. 1168-1174.
[21] R. Teive, E. L. Silva, L. G. S. Fonseca, A cooperative expert system for transmission expansion planning of electrical power systems, IEEE Trans. Power Systems, Vol. 13, No. 2, 1998, pp. 636-642.
[22] J. Yen, Y. Yan, J. Contreras, P. C. Ma, F. F. Wu, Multi-agent approach to the planning of power transmission expansion, Decision Support Systems, Vol. 28, No. 3, 2000, pp. 279-290.
[23] N. Alguacil, A. L. Motto, A. J. Conejo, Transmission expansion planning: a mixed-integer LP approach, IEEE Trans. Power Systems, Vol. 18, No. 3, 2003, pp. 1070-1077.
[24] A. M. L. da Silva, S. M. P. Ribeiro, V. L. Arienti, R. N. Allan, M. B. D. C. Filho, Probabilistic load flow techniques applied to power system expansion planning, IEEE Trans. Power Systems, Vol. 5, No. 4, 1990, pp. 1047-1053.
[25] R. A. Gallego, A. B. Alves, A. Monticelli, R. Romero, Parallel simulated annealing applied to long term transmission network expansion planning, IEEE Trans. Power Systems, Vol. 12, No. 1, 1997, pp. 181- 188.
[26] R. S. Chanda, P. K. Bhattacharjee, A reliability approach to transmission expansion planning using fuzzy fault-tree model, Electric Power Systems Research, Vol. 45, No. 2 1998, pp. 101-108.
[27] R. S. Chanda, P. K. Bhattacharjee, A reliability approach to transmission expansion planning using minimal cut theory, Electric Power Systems Research, Vol. 33, No. 2, 1995, pp. 111-117.
[28] N. H. Sohtaoglu, The effect of economic parameters on power transmission planning, IEEE Trans. Power Systems, Vol. 13, 1998, pp. 941-945.
[29] B. Graeber, Generation and transmission expansion planning in southern Africa, IEEE Trans. Power Systems, Vol. 14, 1999, pp. 983-988.
[30] M. S. Kandil, S. M. El-Debeiky, N. E. Hasanien, Rule-based system for determining unit locations of a developed generation expansion plan for transmission planning, IEE Proc. Generation, Transmission and Distribution, Vol. 147, No. 1, 2000, pp. 62-68.
[31] S. T. Y. Lee, K. L. Hocks, H. Hnyilicza, Transmission expansion of branch and bound integer programming with optimal cost capacity curves, IEEE Trans. Power Apparatus and Systems, Vol. PAS-93, No. 7, 1970, pp. 1390-1400.
[32] A. S. D. Braga, J. T. Saraiva, A multiyear dynamic approach for transmission expansion planning and long-term marginal costs computation, IEEE Trans. Power Systems, Vol. 20, No. 3, 2005, pp. 1631-1639.
[33] Y. X. Jin, H. Z. Cheng, J. Y. M. Yan, L. Zhang, New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electric Power Systems Research, Vol. 77, No. 3-4, 2007, pp. 227-233.
[34] S. Jalilzadeh, A. Kazemi, H. Shayeghi, M. Mahdavi, Technical and economic evaluation of voltage level in transmission network expansion planning using GA, Energy Conversion and Management, Vol. 49, No. 5, May 2008, pp. 1119-1125.
[35] H. Shayeghi, S. Jalilzadeh, M. Mahdavi, H. Haddadian, Studying influence of two effective parameters on network losses in transmission expansion planning using DCGA, Energy Conversion and Management, Vol. 49, No. 11, 2008, pp. 3017-3024.
[36] H. Shayeghi, A. Jalili, H. A. Shayanfar, Multi-stage fuzzy load frequency control using PSO, Energy Conversion and Management, Vol. 49, No. 10, 2008, pp. 2570-2580.
[37] J. Kennedy, R. Eberhart, Y. Shi, Swarm intelligence, Morgan Kaufmann Publishers, San Francisco; 2001.
[38] M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evolutionary Computation, Vol. 6, No. 1, 2002, pp. 301758-73.