Biokinetics of Coping Mechanism of Freshwater tilapia following Exposure to Waterborne and Dietary Copper
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Biokinetics of Coping Mechanism of Freshwater tilapia following Exposure to Waterborne and Dietary Copper

Authors: Jeng-Wei Tsai

Abstract:

The purpose of this study was to understand the main sources of copper (Cu) accumulation in target organs of tilapia (Oreochromis mossambicus) and to investigate how the organism mediate the process of Cu accumulation under prolonged conditions. By measuring both dietary and waterborne Cu accumulation and total concentrations in tilapia with biokinetic modeling approach, we were able to clarify the biokinetic coping mechanisms for the long term Cu accumulation. This study showed that water and food are both the major source of Cu for the muscle and liver of tilapia. This implied that control the Cu concentration in these two routes will be correlated to the Cu bioavailability for tilapia. We found that exposure duration and level of waterborne Cu drove the Cu accumulation in tilapia. The ability for Cu biouptake and depuration in organs of tilapia were actively mediated under prolonged exposure conditions. Generally, the uptake rate, depuration rate and net bioaccumulation ability in all selected organs decreased with the increasing level of waterborne Cu and extension of exposure duration.Muscle tissues accounted for over 50%of the total accumulated Cu and played a key role in buffering the Cu burden in the initial period of exposure, alternatively, the liver acted a more important role in the storage of Cu with the extension of exposures. We concluded that assumption of the constant biokinetic rates could lead to incorrect predictions with overestimating the long-term Cu accumulation in ecotoxicological risk assessments.

Keywords: Biokinetics, Chronic exposure, Copper, Coping mechanism, Tilapia

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061324

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581

References:


[1] C. R. Janssen, D. G. Heijerick, K. A. C. De Schamphelaere, H. E. Allen, Environmental risk assessment of metals: tools for incorporating bioavailability. Environ Int 28:793-800. 2003.
[2] B. I. Escher, J. L. M. Hermens, Internal exposure: linking bioavailability to effects. Environ Sci Technol 38:455A-462A. 2004.
[3] J.W. Tsai,W. Y. Chen, Y. R. Ju, C. M. Liao, Bioavailability links mode of action can improve the long-term field risk assessment for tilapia exposed to arsenic. Environ Int 35:727-736. 2009.
[4] M. H. Grosell, C. Hogstrand, C. M. Wood, Cu uptake and turnover in both Cu acclimated and non-acclimated rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 38:257-276. (1997)
[5] P. S. Rainbow, Trace metal concentrations in aquatic invertebrates: why or so what? Environ Pollut 120:497-507. 2002.
[6] D. J. Cain, S. N. Luoma, W. G. Wallace, Linking metal bioaccumulation of aquatic insects to their distribution patterns in a mining-impacted river. Environ Toxicol Chem 23:1463-1473. 2004.
[7] W. W. Green, R. S. Mirza,C. M. Wood, G. G. Pyle, Copper binding dynamics and olfactory impairment in fathead minnows (Pimephale promelas). Environ Sci Technol 44:1431-1437. (2010)
[8] J. C. McGeer, K. V. Brix, J .M. Skeaff, D. K. DeForest, S. I. Brigham, W. J. Adams, A. Green, Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. Environ Toxicol Chem 22:1017-1037. 2003.
[9] C. M. Liao, B. C. Chen, S. Singh, M. C. Lin, C. W. Liu, B. C. Han, Acute toxicity and bioaccumulation of arsenic in tilapia (Oreochromis mossambicus) from a blackfoot disease area in Taiwan. Environ Toxicol 18:252-259. 2003.
[10] C. M. Wood, M. Grosell, M. D. McDonald, R. C. Playle, P. J. Walsh, Effects of waterborne silver in a marine teleost, the gulf toadfish (Opsanus beta): Effects of feeding and chronic exposure on bioaccumulation and physiological responses. Aquat Toxicol 99:138-148. 2010.
[11] C. Kamunde, M. Grosell, D. Higgs, C. M. Wood, Copper, metabolism in actively growing rainbow trout (Oncorhynchus mykiss) interactions between dietary and waterborne copper uptake. J Exp Biol 205:279-290. 2002.
[12] M. Grosell, I. Boetius, H. J. M. Hansen, P. Rosenkilde, Influence of preexposure to sublethal levels of copper on 64Cu uptake and distribution among tissues of the European eel (Anguilla anguilla). Comp Biochem Physiol C 114:229-235. 1996.
[13] F. Dang, H. Zhong, W. X. Wang, Copper uptake kinetics and regulation in a marine fish after waterborne copper Acclimation. Aquat Toxicol 94:238-244. 2009.
[14] L. D. Kraemer, P. G. C. Campbell, L . Hare, A field study examining metal elimination kinetics in juvenile yellow perch (Perca flavescens). Aquat Toxicol 75:108-126. 2005.
[15] J. C. McGeer, S. Nadella, D. H. Alsop, L. Hollis, L. N. Taylor, D. G. McDonald, C.M. Wood , Influence of acclimation and cross-acclimation of metals on acute Cd toxicity and Cd uptake and distribution in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 84(2):190-197. 2007.
[16] A. Suhendrayatna Ohki, T. Nakajima, S. Maeda, Studies on the accumulation and transformation of arsenic in fresh organisms II. Accumulation and transformation of arsenic compounds by Tilapia mossambica. Chemosphere 46:325-331. 2002.
[17] C. M. Liao, J. W. Tsai, M. P. Ling, H. M. Liang, Y. H. Chou, P. T. Yang, Organ-specific toxicokinetics and dose-response of arsenic in tilapia Oreochromis mossambicus. Arch Environ Contam Toxicol 47:502-510. 2004.
[18] S. M. Wu, H. R. Ding, L. Y. Lin, Y. S. Lin, Juvenile tilapia (Oreochromis mossambicus) strive to maintain physiological functions after waterborne copper exposure. Arch Environ Contam Toxicol 54(3):482-492. 2008.
[19] Y. Iger, R. A. C. Lock, J. C. A. van der Meij, S. E. Wendelaar Bonga, Effects of water-borne cadmium on the skin of the common carp (Cyprinus carpio). Arch Environ Contam Toxicol 26:342-350. 1994.
[20] S.M. Wu, K. J. Jong, S. Y. Kuo, Effects of copper sulfate on ion balance and growth in tilapia larvae (Oreochromis mossambicus). Arch Environ Contam Toxicol 45(3):357-363. 2003.
[21] Environmental Protection Administration ROC (Taiwan). http://ivy5.epa.gov.tw/epalaw/index.aspx. 2001.
[22] S. N. Luoma, P. S. Rainbow, Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921-1931. 2005.
[23] J. W. Tsai, C. M. Liao, V. H. C. Liao, A biologically based damage assessment model to enhance aquacultural water quality management. Aquaculture 251(2-4):280-294. (2006)
[24] L. D. Kraemer, P. G. C. Campbell, L. Hare, Modeling cadmium accumulation in indigenous yellow perch (Perca flavescens). Can J Fish Aquat Sci 65:1623-1634. 2008.
[25] F. Dang, W. X. Wang, Subcellular controls of mercury trophic transfer to a marine fish. Aquat Toxicol 99:500-506. 2010.
[26] L. D. Kraemer, P. G. C. Campbell, L. Hare, J. C. Auclair, A field study examining the relative importance of food and water as sources of cadmium for juvenile yellow perch (Perca flavescens). Can J Fish Aquat Sci 63(3):549-557. 2006.
[27] J. R. Erickson, D. R. Mount, T. L. Highland, J. R. Hockett, E. N. Leonard, V. R. Mattson, T. D. Dawson, K. G. Lott, Effects of copper, cadmium, lead, and arsenic in a live diet on juvenile fish growth. Can J Fish Aquat Sci 67(11):1816-1826. 2010.
[28] W. G. Wallace, G. R. Lopez, Relationship between subcellular cadmium distribution in prey and cadmium trophic transfer to a predator. Estuar Coast 19:923-930. 1996.
[29] W. G. Wallace, G. R. Lopez, J. S. Levinton, Cadmium resistance in an oligochaete and its effect on cadmium trophic transfer to an omnivorous shrimp. Mar Ecol Prog Ser 172:225-237. 1998.
[30] M. C. Newman,M. A. Unger, Fundamentals of Ecotoxicology, second ed. Lewis Publishers, CRC Press, Boca Raton, FL. 2003
[31] S. Copper, L. Hare, P. G. C. Campbell, Modeling cadmium uptake from water and food by the freshwater bivalve Pyganodon grandis. Can J Fish Aquat Sci 67(11):1874-1888. 2010.
[32] P. Carriquiriborde, A. E. Ronco, Distinctive accumulation patterns of Cd(II), Cu(II), and Cr(VI) in tissue of the South American teleost, pejerrey (Odontesthes bonariensis). Aquat Toxicol 86:313-322. (2008)
[33] J. C. McGeer, C. Szebedinszky, D. G. McDonald, C. M. Wood, Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout 2: tissue specific metal accumulation. Aquat Toxicol 50:245-256. 2000.
[34] L. D. Kraemer, P. G. C. Campbell, L. Hare, Dynamics of Cd, Cu and Zn accumulation in organs and sub-cellular fractions in field transplanted juvenile yellow perch (Perca flavescens). Environ Pollut 138:324-337. 2005.
[35] S. Subathra, R. Karuppasamy, Bioaccumulation and depuration pattern of copper in different tissues of Mystus vittatus, related to various size groups. Arch Environ Contam Toxicol 54:236-244. 2008.
[36] P. Couture, J. W. Rajotte, Morphometric and metabolic indicators of metal stress in wild yellow perch (Perca flaveseens) from Sudbury, Ontario: A review. J Environ Monitor 5:216-221. 2003.
[37] S. M. G. J. Pelgrom, R. A. C. Lock, P. H. M. Balm, S. E. Wendelaar Bonga, Integrated physiological response of tilapia, Oreochromis mossambicus, to sublethal copper exposure. Aquat Toxicol 32:303-320. 1995.
[38] C. Hogstrand,M. Grosell, C.M.Wood, H. Hansen, Internal redistribution of radi olabelled silver among tissues of rainbow trout (Oncorhynchus mykiss) and European eel (Anguilla anguilla): the influence of silver speciation. Aquat Toxicol 63:139-157. 2003.
[39] P. F. Landrum, Bioavailability and toxicokinetics of polycyclic aromatic hydrocarbons sorbed to sediments for the amphipod Pontoporeia hoyi. Environ Sci Technol 23:588-595. 1989.
[40] C. P. Higgins , Z. J. Paesani , T. E. Chalew , R. U. Halden, Bioaccumulation of triclocarban in Lumbriculus variegatus. Environ Toxicol Chem 28:2580-2586. 2009.
[41] G. De Boeck, M. Eyckmans, I. Lardon, R. Bobbaers, A. K. Sinha, R. Blust, Metal accumulation and metallothionein induction in the spotted dogfish Scyliorhinus canicula. Comp Biochem Physiol A 155:503-508. 2010.