WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/5587,
	  title     = {Biokinetics of Coping Mechanism of Freshwater tilapia following Exposure to Waterborne and Dietary Copper},
	  author    = {Jeng-Wei Tsai},
	  country	= {},
	  institution	= {},
	  abstract     = {The purpose of this study was to understand the main
sources of copper (Cu) accumulation in target organs of tilapia
(Oreochromis mossambicus) and to investigate how the organism
mediate the process of Cu accumulation under prolonged conditions.
By measuring both dietary and waterborne Cu accumulation and total
concentrations in tilapia with biokinetic modeling approach, we were
able to clarify the biokinetic coping mechanisms for the long term Cu
accumulation. This study showed that water and food are both the
major source of Cu for the muscle and liver of tilapia. This implied
that control the Cu concentration in these two routes will be correlated
to the Cu bioavailability for tilapia. We found that exposure duration
and level of waterborne Cu drove the Cu accumulation in tilapia. The
ability for Cu biouptake and depuration in organs of tilapia were
actively mediated under prolonged exposure conditions. Generally,
the uptake rate, depuration rate and net bioaccumulation ability in all
selected organs decreased with the increasing level of waterborne Cu
and extension of exposure duration.Muscle tissues accounted for over
50%of the total accumulated Cu and played a key role in buffering the
Cu burden in the initial period of exposure, alternatively, the liver
acted a more important role in the storage of Cu with the extension of
exposures. We concluded that assumption of the constant biokinetic
rates could lead to incorrect predictions with overestimating the
long-term Cu accumulation in ecotoxicological risk assessments.},
	    journal   = {International Journal of Environmental and Ecological Engineering},
	  volume    = {6},
	  number    = {5},
	  year      = {2012},
	  pages     = {266 - 274},
	  ee        = {https://publications.waset.org/pdf/5587},
	  url   	= {https://publications.waset.org/vol/65},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 65, 2012},
	}