Design an Electrical Nose with ZnO Nanowire Arrays
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Design an Electrical Nose with ZnO Nanowire Arrays

Authors: Amin Nekoubin, Abdolamir Nekoubin

Abstract:

Vertical ZnO nanowire array films were synthesized based on aqueous method for sensing applications. ZnO nanowires were investigated structurally using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The gas-sensing properties of ZnO nanowires array films are studied. It is found that the ZnO nanowires array film sensor exhibits excellent sensing properties towards O2 and CO2 at 100 °C with the response time shorter than 5 s. High surface area / volume ratio of vertical ZnO nanowire and high mobility accounts for the fast response and recovery. The sensor response was measured in the range from 100 to 500 ppm O2 and CO2 in this study.

Keywords: Gas sensor, semiconductor, ZnO, Nanowire array

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061274

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504

References:


[1] U. Hoefer, J. Frank,M. Fleischer, High temperature Ga2O3-gas sensors and SnO2-gas sensors: a comparison, Sens. Actuators B: Chem. 78 (2010) 6-11.
[2] M. Bendahan, R. Boulmani, J.L. Seguin, K. Aguir, Characterization of ozone sensorsbased on WO3 reactively sputtered films: influence of O2 concentrationin the sputtering gas, and working temperature, Sens. Actuators B: Chem. 100(2010) 320-324.
[3] B.L. Cushing, V.L. Kolesnichenko, C.J. O-Connor, Recent advances in the liquidphase syntheses of inorganic nanoparticles, Chem. Rev. 104 (2004) 3893-3946.
[4] Y.W. Jun, J.S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes, Angew. Chem. Int. Ed. 45(2006) 3414-3439.
[5] N. Pinna, M. Niederberger, Surfactant-free nonaqueous synthesis of metal oxide nanostructures, Angew. Chem. Int. Ed. 47(2008) 5292- 5304.
[6] J. Park, J. Joo, J. Kwon, S.G. Kwon, Y. Jang, T. Hyeon, Synthesis of monodisperse spherical nanocrystals, Angew. Chem. Int. Ed. 46 (2007) 4630-4660.
[7] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Quasione dimensional metal oxide semiconductorspreparation, c haracterizationand application as chemical sensors, Progr. Mater. Sci. 54 (2009) 1-67.
[8] G. Korotcenkov, Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches, Sens. Actuators B107 (2005) 209-232.
[9] M. Niedereberger, G. Garnweitner, N. Pinna, G. Neri, Nonaqueous routes to crystalline metal oxide nanoparticles: formation mechanisms and applications, Progr. Solid State Chem. 33 (2005) 59-70.
[10] C.H. Kwon, H.K. Hong, D.H. Yun, K. Lee, S.T. Kim, Y.H. Roh, B.H. Lee, Thick film zinc-oxide gas sensor for the control of lean air-to-fuel ratio in domestic combustion systems, Sens. Actuators B 24/25 (1995) 610-613.
[11] A.E. Varfolomeev, A.V. Eryshkin, V.V. Malyshev, A.S. Razumov, S.S. Yakimov, Astudy of the sensitivity of ZnO-based sensors to CO, H2, NH3, PH3, a nd AsH3, J.Anal. Chem. 52 (1997) 66-68.
[12] P. Mitra, A.P. Chatterjee, H.S. Maiti, ZnO thin film sensor, Mater. Lett. 35 (1998)33-38.
[13] G.S. Trivikrama Rao, D. Tarakarama Rao, Gas sensitivity of ZnO based thick film sensor to NH3 at room temperature, Sens. Actuators B 55 (1999) 166-169.
[14] Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, Zinc oxide nanorod and nanowire for humidity sensor, Appl. Surf. Sci. 242 (2005) 212-217.
[15] J.Q. Xu, Y.Q. Pan, Y.A. Shun, Z.-Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sens. Actuators B 66 (2000) 277- 279.
[16] J.J. Delaunay, N. Kakoiyama, I. Yamada, Fabrication of threedimensional network of ZnO tetratpods and its response to ethanol, Mater. Chem. Phys. 104 (2007) 141-145.
[17] X. Jiaqiang, C. Yuping, C. Daoyong, S. Jianian, Hydrothermal synthesis and gas sensing characters of ZnO nanorods, Sens.
[18] Y. Lv, L. Guo, H. Xu, X. Chu, Gas-sensing properties of well-crystalline ZnO nanorods grown by a simple route, Physica E 36 (2007) 102-105.
[19] C. Xiangfeng, J. Dongli, A.B. Djurisic, Y.H. Leung, Gas-sensing properties of thick film based on ZnO nano-tetrapods, Chem. Phys. Lett. 401 (2005) 426-429.
[20] H. Xu, X. Liu, D. Cui, M. Li, M. Jiang, Novel method for improving the performance of ZnO gas sensors, Sens. Actuators B 114 (2006) 301- 307.
[21] Y. Ma, W.L. Wang, K.J. Liao, C.Y. Kong, Study on sensitivity of nanograin ZnO gas sensors, J. Wide Band-gap Mater. 10 (2002) 113-120.
[22] M.C. Carotta, A. Cervi, V. di Natale, S. Gherardi, A. Giberti, V. Guidi, D. Puzzovio, B. Vendemiati, G. Martinelli, M. Sacerdoti, D. Calestani, A. Zappettini,M. Zha, L. Zanotti, ZnO gas sensors: a comparison between nanoparticles and nanotetrapods-based thick films, Sens. Actuators B 137 (2009) 164-169.
[23] N. Yamazoe, K. Shimanoe, Roles of shape and size of component crystals in semiconductor gas sensors: I. Response to oxygen, J. Electrochem. Soc. 155 (2008) J85-J92.
[24] M.HyunSeo, M. Yuasa, T. Kida, J. Soo Huh, K. Shimanoe, N. Yamazoe, Gas sensing characteristics and porosity control of nanostructured films composed of TiO2nanotubes, Sens. Actuators B 137 (2009) 513-520.
[25] J.Q. Xu, J.J. Han, Y. Zhang, Y.A. Sun, B. Xie, Studies alcohol sensing mechanismof ZnO based gas sensors, Sens. Actuators B: Chem. 132 (2008) 334-339.