Effect of Indole-3-Acetic Acid on Arsenic Translocation in Agricultural Crops
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32821
Effect of Indole-3-Acetic Acid on Arsenic Translocation in Agricultural Crops

Authors: Ye. V. Lyubun

Abstract:

The problem of agricultural-soil pollution is closely linked to the production of ecologically pure foodstuffs and to human health. An important task, therefore, is to rehabilitate agricultural soils with the help of state-of-the-art biotechnologies, based on the use of metal-accumulating plants. In this work, on the basis of literature data and the results of prior research from this laboratory, plants were selected for which the growing technology is well developed and which are widespread locally: sugar sorghum (Sorghum saccharatum), sudangrass (Sorghum sudanense (Piper.) Stapf.), and sunflower (Helianthus annuus L.). I report on laboratory experiments designed to study the influence of synthetic indole-3- acetic acid and the extracellular indole-3-acetic acid released by the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245 on growth of and arsenic accumulation by these plants.

Keywords: Arsenic, bioaccumulation, plant-growth-promoting rhizobacteria, phytohormones.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1060954

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669

References:


[1] H. M. Anawar, J. Akai, K. Komaki, H. Terao, T. Yoshioka, T. Ishizuka, S. Safiullah, and K. Kato, "Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes", J. Geochem. Explor., vol. 77, pp. 109-131, Mar. 2003.
[2] E. A. Murphy and M. Aucott, "An assessment of the amounts of arsenical pesticides used historically in a geographical area", Sci. Total Environ., vol. 218, no. 2, pp. 89-101, July 1998.
[3] D. Sarkar and R. Datta, "Arsenic fate and bioavailability in two soils contaminated with sodium arsenate pesticide: an incubation study", Bull. Environ. Contam. Toxicol., vol. 72, pp. 240-247, Feb. 2004.
[4] M. Mkandawire and E. G. Dudel, "Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany", Sci. Total Environ., vol. 336, pp. 81-89, Jan.2005.
[5] Ye. V. Lyubun, P. V. Kosterin, E. A. Zakharova, A. A. Shcherbakov, and E. E. Fedorov, "Arsenic-contaminated soils: phytotoxicity studies with sunflower and sorghum", J. Soils Sediment, vol. 2, no. 3, pp. 143- 147, 2002.
[6] Yu. A. Potatueva, V. G. Ignatov, and E. A. Karpova, "Effect of phosphorus fertilizers on the content of mobile arsenic species in soils", Agrokhimiya, no. 1, pp. 31-40, Jan. 2007 (in Russian).
[7] B. Booth, "Cancer rates attributable to arsenic in rice vary globally", Environ. Sci. Technol., vol. 43, no. 5, pp. 1243-1244, Mar. 2009.
[8] K. Shah and J. M. Nongkynrih, "Metal hyperaccumulation and bioremediation", Biol. Plant., vol. 51, no. 4, pp. 618-634, Dec. 2007.
[9] O. V. Singh, S. Labana, G. Pandey, R. Budhiaraja, and R. K. Jain, "Phytoremediation: an overview of metallic ion decontamination from soil", Appl. Microbiol. Biotechnol., vol. 61, pp. 405-412, Jun. 2003.
[10] D. E. Salt, R. D. Smith, and I. Raskin, "Phytoremediation", Annu. Rev. Plant Physiol. Plant Mol. Biol., vol. 49, pp. 643-668, Jun. 1998.
[11] E. Meers, A. Ruttens, M. Hopgood, D. Samson, and F. Tack, "Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals", Chemosphere, vol. 58, pp. 1011-1022, Feb. 2005.
[12] X.-Z. Yu and J.-D. Gu, "The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees", Ecotoxicology, vol. 17, pp. 143-152, Apr. 2008.
[13] M. S. Khan, A. Zaidi, P. Ahmad Wani, and M. Oves, "Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils", Environ. Chem. Lett., vol. 7, no 1, pp. 1-19, Feb.2009.
[14] D. K. Jain and D. G. Patriquin, "Characterization of a substance produced by Azospirillum which causes branching of wheat root hairs", Can. J. Microbiol., vol. 31, pp. 206-210, 1985.
[15] S. Spaepen, S. Dobbelaere, A. Croonenborghs, and J. Vanderleyden, "Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants", Plant Soil, vol. 312, no. 1-2, pp. 15-23, Nov.2008.
[16] Ye. V. Lyubun, A. Fritzsche, M. P. Chernyshova, E. G. Dudel, and E. E. Fedorov, "Arsenic transformation by Azospirillum brasilense Sp245 in association with wheat (Triticum aestivum L.) roots", Plant Soil, vol. 286, no. 12, pp. 219-227, Aug. 2006.
[17] V. L. D. Baldani, J. I. Baldani, and J. Döbereiner, "Inoculation of fieldgrown wheat (Triticum aestivum) with Azospirillum spp.", Brasil. Biol. Fertil. Soils, vol. 4, pp. 37-40, May 1987.
[18] W. Zimmer and H. Bothe, "The phytohormonal interactions between Azospirillum and wheat", Plant Soil, vol. 110, no. 2, pp. 239-247, Aug.1988.
[19] M. S. Peek and I. N. Forseth, "Non-destructive estimation of lateral root distribution in an aridland perennial", Plant Soil, vol. 273, no. 1-2, pp. 211-217, Jun. 2005.
[20] E. A. Zakharova, A. A. Shcherbakov, V. V. Brudnik, N. G. Skripko, N. Sh. Bulkhin, and V. V. Ignatov, "Biosynthesis of indole-3-acetic acid in Azospirillum brasilense: insights from quantum chemistry", Eur. J. Biochem., vol. 259, no. 3, pp. 572-576, Feb.1999.
[21] E. A. Zakharova, A. D. Iosipenko, and V. V. Ignatov, "Effect of watersoluble vitamins on the production of indole-3-acetic acid by Azospirillum brasilense", Microbiol. Res., vol. 155, no. 3, pp. 209-214, Feb. 2000.