
 

 

  
Abstract—In this paper back-propagation artificial neural 

network (BPANN) with Levenberg–Marquardt algorithm is 
employed to predict the limiting drawing ratio (LDR) of the deep 
drawing process. To prepare a training set for BPANN, some finite 
element simulations were carried out. die and punch radius, die arc 
radius, friction coefficient, thickness, yield strength of sheet and 
strain hardening exponent were used as the input data and the LDR 
as the specified output used in the training of neural network. As a 
result of the specified parameters, the program will be able to 
estimate the LDR for any new given condition. Comparing FEM and 
BPANN results, an acceptable correlation was found. 
 

Keywords—BPANN, deep drawing, prediction, limiting drawing 
ratio (LDR), Levenberg–Marquardt algorithm 

I. INTRODUCTION 
HE correlation of the LDR of a sheet metal with its 
material properties and process parameter has been 
activated by industrial necessity for improving drawability.            

Attempts to evaluate The LDR value have been made by many 
researchers. Chan [1] predicted the LDR using an elasto-plastic 
finite-element method (FEM) and compared it with the 
experimental result. Leu [2] derived a simple and accurate 
equation to show the effects of the normal anisotropy value (R) 
and the strain-hardening exponent (n) on the LDR. Tung 
predicted LDR by abductive networks under the process 
parameters such as blank holder force, the profile radius of the 
die, the clearance between the punch and the die and the 
friction coefficient [3].In this work, a neural network model is 
coupled with a finite element analysis to predict the limiting 
drawing ratio (LDR) of the deep drawing process. In this way, 
the LDR can be determined for different process parameters, 
die and punch radius, die arc radius, friction coefficient, 
thickness, yield strength of sheet, strain hardening exponent by 
finite element analysis, using ANSYS software. The employed 
finite element analysis is capable of considering the effects of 
various parameters. These results then be used to training the 
neural network. Comparing FEM and ANN results, an 
acceptable correlation was found 
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II. DEEP DRAWING PROCESS  
The deep drawing process is a sheet metal process where sheet 
metal is formed into a desired shape, usually by mechanical or 
hydraulic presses. 
   It is widely used in industries such as automobiles, 
airplanes, etc. The design and control of a deep drawing 
process depends on not only the workpiece material, but also 
on the condition at the tool workpiece interface, the mechanic 
of plastic deformation, and the equipment used. 
   The limiting drawing ratio (LDR) is commonly used to 
provide a measure of the drawability of sheet metal, The LDR 
defined as the ratio of the maximum blank diameter to the 
punch diameter, without failure. 

   The LDR is affected by many material and process 
parameters, such as the strain hardening exponent, friction, 
the profile radius of the die and punch, etc 
Fig.1 shows the deep drawing operation under consideration 
that a circular blank of original radius R0    and thickness t0 is 
deep drawn by the flat-bottomed punch through a die opening 
of radius r1 with a constant clearance blank-holder. Radially 
symmetrical properties and rigid–plastic strain-hardening 
material are assumed.  

 
Fig.1 Schematic of deep drawing process 

 
The friction effect is considered in the analysis. Under plane-
strain conditions, the thickness in the flange region of deep 
drawing is invariable. All dimensions of tool geometries are 
measured along with the middle line of the thickness of the 
deformed sheet .The strain-hardening characteristic of sheet 
metal is assumed to follow the form: 

nKεσ =                                                            (1) 

III. FINITE ELEMENT SIMULATION  
  There are numerous influencing parameters, but according 
to the experimental and simulation results, the primary ones 
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are punch radius (r1), die radius(r2), die arc radius (rd), 
friction coefficient (m), thickness (t0),yield strength of sheet 
( yσ ) and strain hardening exponent     (K ,n) Through 20 
sets of finite element analysis under different working 
condition the input data achieved (Table.I). At the same time 
in order to confirm the validity of the neural network model, 
an extra three simulation are carried out under different 
condition from the above 20 sets (Table.II).  Because of the 
existing symmetry, only one quarter of the workpiece is 
considered in the modeling (Fig.2). The tooling surface of die 
was modeled using rigid- body model. Simulations were 
carried out from the sheet of diameter 100 mm with the 
diameter progressively increasing by 5 mm until the sheet 
was fractured. 
    Compares the LDR value obtained by FEM simulation 
with that obtained experimentally [4], proving that the model 
proposed herein is accurate in determining the LDR of deep 
drawing process. 

 
Fig. 2 FEM simulation 

IV. NEURAL NETWORKS 
 An artificial neural network is a parallel distributed 

information processing system. It stores the samples with 
distributed coding, thus forming a trainable nonlinear system. 
The main idea behind a neural network approach resembles 
the human brain functioning. Given the input and the expected 
outputs, the program is self adaptive to the environment so as 
to respond to different inputs rationally. The objective of this 
paper is to investigate the prediction of LDR in deep drawing 
process, by training a BPANN.The neuron can be classified 
into three types: input, output, hidden neurons. Input neurons 
are the ones that receive input from the environment, such as 
punch radius (r1), die radius(r2), die arc radius (rd), friction 
coefficient (m), thickness (t0), yield strength of sheet ( yσ ) 
and strain hardening exponent (K ,n) in this study. Output 

neurons are those that send the signals out of the system, like 
LDR. As the activation function, Sig activation function has 
been used, which is continuous, nonlinear, monotonic non-
decreasing and S shaped function (equation 2). [5] 

 

( ) xe
xf β−+

=
1

1                                                            (2) 

  In this study, the back propagation, which is a widely used 
algorithm, is used in the training step. Back propagation is a 
systematic method for training multilayer artificial neural 
networks. It has a strong mathematical foundation based on 
gradient descent learning. Elman BP network train with the back 
propagation algorithm is used. Elman networks are back 
propagation networks, with the addition of a feedback 
connection from the output of the hidden layer to its input. This 
feedback path allows Elman networks to learn to recognize and 
generate temporal patterns, as well as spatial patterns [6]. For an 
Elman to have the best chance at learning a problem it needs 
more hidden neurons in its hidden layer than are actually 
required for a solution by another method. 
   This model has four layers including, an input layer, two 
hidden layer and an output layer. In this work, different number 
of hidden units has been employed to obtain the optimum 
number of hidden units. The experiments show that number of 12 
units in the hidden layer is enough to reach the desired accuracy 
(Table.III). 
   Training of the neural network was done in MATLAB, using 
Sig and TRAINLM function. TRAINLM is a network training 
function that updates weights and bias values in a back 
propagation algorithm according to Levenberg–Marquardt 
optimization. Levenberg–Marquardt algorithm is a highly 
efficient method for solving non-linear optimization problems 
[7], [8]. The trained network model showed error of 1.7%, 
2.59% and 3.8% while testing with the 3 data sets (Table. 2). 

V. CONCLUSION  
  In this work, a four-layer back propagation network is 
developed to best fit this nonlinear engineering problem. 
Through comparison between the targeted value and training 
results with different neuron numbers in the hidden layers, an 
appropriate number of 12 is suitable to set up this network. For 
this nonlinear engineering problem, the appropriate algorithm is 
Levenberg -Marquardt because it can reach high accuracy. The 
error between the predicted value and targeted one is little. 
Using this network can save much time  
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TABLE I 

FEM SIMULATION CONDITION

 
 

TABLE II 
TEST CONDITION 

 

(LDR) n k yield strength 

( yσ ) 

Mpa 

thickness  

(t0) mm 

friction 

coefficient  

(m) 

die 

radius 

(r2) mm 

die arc 

radius (rd) 

mm 

punch 

radius (r1) 

mm 

 

2.13 0.263 610 155 1 0.1 39.25 8.5 30.75 1 

2.11 0.263 610 155 1 0.2 39.25 8.5 30.75 2 

2.13 0.248 612 157 1 0.1 39.25 8.5 30.75 3 

2.10 0.248 612 157 1 0.2 39.25 8.5 30.75 4 

2.20 0.264 619 138 1.2 0.1 39.25 8.6 30.65 5 

2.22 0.264 619 138 1.2 0.1 39.38 8.6 30.78 6 

2.16 0.264 619 138 1.2 0.2 39.38 8.6 30.78 7 

2.12 0.264 619 138 1.2 0.1 39.46 8.6 30.86 8 

2.09 0.264 619 138 1.2 0.2 39.46 8.6 30.86 9 

2.03 0.228 622 171 1.2 0.2 39.26 5.4 30.86 10 

2.07 0.228 622 171 1.2 0.2 39.25 8.6 30.86 11 

2.08 0.228 622 171 1.2 0.2 41.46 10.6 30.86 12 

2.12 0.228 622 171 1.2 0.2 43.46 12.6 30.86 13 

2.15 0.228 622 171 1.2 0.2 45.46 14.6 30.86 14 

2.40 0.238 631 258 0.88 0.05 33.27 6.79 26.48 15 

2.43 0.238 631 203 0.79 0.05 33.27 6.74 26.52 16 

2.37 0.238 631 300 0.73 0.05 33.27 6.71 26.55 17 

2.39 0.238 631 292 0.73 0.05 33.27 6.71 26.55 18 

2.36 0.238 631 276 0.99 0.05 33.27 6.84 26.25 19 

2.33 0.238 631 244 1 0.05 33.24 6.85 26.42 20 

yield strength  

( yσ ) 

Mpa 

n k thickness (t0) 

mm 

friction 

coefficient (m) 

die radius  

(r2) mm 

die arc radius 

(rd) mm 

punch 

radius (r1) 

mm 

 

138 0.264 619 1.2 0.2 39.25 8.6 30.65 1 

202 0.238 631 0.90 0.05 33.27 6.80 26.47 2 

155 0.262 610 1 0.15 39.25 8.5 30.75 3 
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Fig. 3The structure of the neural network 

 
TABLE.III 

COMPARISON OF MEAN SQUARE ERROR USING DIFFERENT 
STRUCTURE OF ANN 

MSE 
Mean square error 

Structure of ANN 

17712e-7 8-6-6-1 

15230e-8 8-7-7-1 

24583e-10 8-8-8-1 

11243e-11 8-9-9-1 

154477e-7 8-10-10-1 

12402e-12 8-11-11-1 

345258e-14 8-12-12-1 

42433e-6 8-13-13-1 

24131e-6 8-14-14-1 
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