WASET
	%0 Journal Article
	%A Manal H. Saleh
	%D 2013
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 78, 2013
	%T Laminar Free Convection of Nanofluid Flow in Horizontal Porous Annulus
	%U https://publications.waset.org/pdf/4663
	%V 78
	%X A numerical study has been carried out to investigate
the heat transfer by natural convection of nanofluid taking Cu as
nanoparticles and the water as based fluid in a three dimensional
annulus enclosure filled with porous media (silica sand) between two
horizontal concentric cylinders with 12 annular fins of 2.4mm
thickness attached to the inner cylinder under steady state conditions.
The governing equations which used are continuity, momentum and
energy equations under an assumptions used Darcy law and
Boussinesq-s approximation which are transformed to dimensionless
equations. The finite difference approach is used to obtain all the
computational results using the MATLAB-7. The parameters affected
on the system are modified Rayleigh number (10 ≤Ra*≤ 1000), fin
length Hf (3, 7 and 11mm), radius ratio Rr (0.293, 0.365 and 0.435)
and the volume fraction(0 ≤ ¤ò ≤ 0 .35). It was found that the
average Nusselt number depends on (Ra*, Hf, Rr and φ). The results
show that, increasing of fin length decreases the heat transfer rate and
for low values of Ra*, decreasing Rr cause to decrease Nu while for
Ra*
greater than 100, decreasing Rr cause to increase Nu and adding
Cu nanoparticles with 0.35 volume fraction cause 27.9%
enhancement in heat transfer. A correlation for Nu in terms of Ra*,
Hf and φ, has been developed for inner hot cylinder.
	%P 1306 - 1312