Design of a Low Power Compensated 90nm RF Multiplier with Improved Isolation Characteristics for a Transmitted Reference Receiver Front End
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Design of a Low Power Compensated 90nm RF Multiplier with Improved Isolation Characteristics for a Transmitted Reference Receiver Front End

Authors: Apratim Roy, A. B. M. H. Rashid

Abstract:

In this paper, a double balanced radio frequency multiplier is presented which is customized for transmitted reference ultra wideband (UWB) receivers. The multiplier uses 90nm model parameters and exploits compensating transistors to provide controllable gain for a Gilbert core. After performing periodic and quasiperiodic non linear analyses the RF mixer (multiplier) achieves a voltage conversion gain of 16 dB and a DSB noise figure of 8.253 dB with very low power consumption. A high degree of LO to RF isolation (in the range of -94dB), RF to IF isolation (in the range of -95dB) and LO to IF isolation (in the range of -143dB) is expected for this design with an input-referred IP3 point of -1.93 dBm and an input referred 1 dB compression point of -10.67dBm. The amount of noise at the output is 7.7 nV/√Hz when the LO input is driven by a 10dBm signal. The mixer manifests better results when compared with other reported multiplier circuits and its Zero-IF performance ensures its applicability as TR-UWB multipliers.

Keywords: UWB, Transmitted Reference, Controllable Gain, RFMixer, Multiplier.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1059493

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291

References:


[1] M. Krcmar, S. Spiegel, F. Ellinger and G. Boeck, "A Broadband Folded Gilbert-Cell CMOS Mixer," in Proc. 14th IEEE Int. Conf. on Circuits and Systems, pp. 820-824, Dec. 2007.
[2] C.-S. Lin, P.-S. Wu, H.-Y. Chang and H. Wang, "A 9-50GHz Gilbert Cell Down Conversion Mixer in .13╬╝m CMOS Technology", IEEE Microwave and Wireless Components Letters, Vol. 16, No. 5, pp. 293-295, May 2006.
[3] Batra, A., Balakrishnan, J., Aiello, G.R., Foerster, J.R. and Dabak, A., "Design of a Multiband OFDM System for Realistic UWB Channel Environments," IEEE T. Microwave Th. and Tech., vol. 52 no. 9, pp. 2123-2138, Sept. 2004.
[4] V. Vidojkovic, J. van der Tang, A. Leeuwenburgh, and A. H. M. van Roermund, "A Low-Voltage Folded-Switching Mixer in 0.18╬╝m CMOS", IEEE Journal of Solid-State Circuits, vol. 40, no. 6, pp. 1259-1264, June 2005.
[5] T.H. Lee, H. Samavati, and H. R. Rategh, "5-GHz CMOS Wireless LANs", IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 268-280, January 2002.
[6] R.A. Baki, and M.N. El-Gamal, "RF CMOS Fully-Integrated Heterodyne Front-End Receivers Design Technique for 5 GHz Applications", IEEE Proceedings of the International Symposium on Cirucuits and Systems,vol. 1, pp. 960-963, May 2004
[7] N. G. Myoung, H. S. Kang, S. T. Kim, B. G. Choi, S.-Su Park, and C. S. Park, "Low-voltage, Low-power and High-gain Mixer Based on Unbalanced Mixer Cell", European Microwave Conf., pp. 395-398, Sept. 2006.
[8] Lu Liu, and Zhihua Wang, "A New High Gain Low Voltage 1.45GHz CMOS Mixer", IEEE International Symposium on Cirucuits and Systems, vol. 5, pp. 5023-5026, May 2005.
[9] S. Roy, J.R. Foerster, V. S. Somayazulu, and D. G. Leeper, "Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity," Proc. IEEE, vol. 92, no. 2, pp. 295-311, 2004.
[10] Bohr, M. T. and El-Mansy, Y. A., "Technology for advanced high performance microprocessors" , IEEE Transactions on Electron Devices, Vol. 45, pp. 620-625,1998.
[11] R. T. Hoctor and H. W. Tomlinson, "Delay-Hopped, Transmitted Reference RF Communications," in Proc. IEEE Conf. On UWB Systems and Technologies, pp. 265-270, 2002.
[12] A. Roy, S. M. S. Rashid, M. A. Arafat and A.B. M. H. Rashid, "Design of a Wideband Delay Element for Transmitted Reference UWB Receivers," in Proc. 6th International Conference on Electrical and Computer Engineering, pp. 97-100, December 2010.
[13] S.M. S. Rashid, A. Roy ,S. N. Ali, and A. B. M. H. Rashid, "Design of a 21 GHz UWB Differential Low Noise Amplifier using .13╬╝m CMOS Process," in Proc. 12th Int. Symp. on Integrated Circuits, pp. 538-541, December 2009.
[14] G.-Y. Jung, J.-H. Shin, and T.-Y. Yun, "A Low Noise UWB CMOS Mixer using Current Bleeding and Resonant Inductor Techniques", Mi crowave and Optical Technology Letters, Vol. 49, No. 7, pp. 1595-1597, July 2007.
[15] H. Darabi, and A.A. Abidi, "Noise in RF CMOS mixers: A simple physical model", IEEE J Solid-State Circ., Vol. 35, pp. 15-25, 2000.
[16] M. Reja, K. Moez and I. Filanovsky, "A Novel 0.6V CMOS Folded Gilbert-Cell Mixer for UWB Applications", in Proc. Of IEEE International SOC Conference, pp. 169-172, September 2008.
[17] H. M. Tuncer, F. Udrea and G. Amaratunga, "A 5 GHz Low Power 0.18╬╝m CMOS Gilbert Cell Mixer", in Proc. Of International Semiconductor Conference CAS, October 2004.
[18] Erixon, M. "Design of a Direct-conversion Radio Receiver Front-end in CMOS Technology," Master-s Thesis, Linkoping University, March 2002.
[19] E. Martins, M. V. G. Gomes, E. M. Bastida, and J. W. Swart, "Design of a LNA and a Gilbert Cell Mixer MMICs with a GaAs PHEMT Technology", in Proc. Of Int. Microwave and Optoelectronics Conf., pp. 267-270, August 1999.
[20] Q. Xu, X. Hu, Y. Jan, Y. Shi, F. F. Dai, and R. C. Jaeger, A directconversion mixer with a DC-offset cancellation for WLAN, in Proc. IEEE Bipolar/BiCMOS Circuits Technol. Meeting (BCTM), pp. 1316, Sep. 2007.
[21] T. P. Wang, C.-C. Chang, R.-C. Liu, M.-D. Tsai, K.-J. Sun, Y.-T. Chang, L.-H. Lu, and H.Wang, A low-power oscillator mixer in 0.18╬╝m CMOS technology, IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 8895, Jan. 2006.
[22] C.-R. Wu, H.-H. Hsieh, and L.-H. Lu, An ultra-wideband distributed active mixer MMIC in 0.18╬╝m CMOS technology, IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 625632, Apr. 2007.
[23] C. S. Lin, P. S.Wu, H. Y. Chang, and H.Wang, A 950-GHz Gilbert cell down-conversion mixer in 0.13╬╝m CMOS technology, IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293295, May 2006.
[24] J. Yoon, H. Kim, C. Park, J. Yang, H. Song, S. Lee, and B. Kim, A new RF CMOSGilbert mixer with improved noise figure and linearity, IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp. 626631, Mar. 2008.
[25] S.S.K. Ho and C.E. Saavedra, "A CMOS broadband low-noise mixer with noise cancellation," IEEE Trans Microwave Theory, vol 58, pp. 11261132, 2010.
[26] Ching-Piao Liang, Pei-Zong Rao, Tien-Jien Huang and Shyh-Jong Chung, A 2.45/5.2 GHz Image Rejection Mixer With New Dual-Band Active Notch Filter, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 11, pp. 716718, Nov 2009.
[27] Jong-Ha Kim, Hee-Woo An and Tae-Yeoul Yun, A Low-Noise WLAN Mixer Using Switched Biasing Technique, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 650652, Oct 2009.
[28] P.-Z. Rao, T.-Y. Chang, C.-P. Liang, and S.-J. Chung, An ultrawideband high-linearity CMOS mixer with new wideband active baluns, Microwave Theory Tech. IEEE Trans., vol. 57, pp. 21842192, 2009.
[29] Dukju Ahn, Dong-Wook Kim and Songcheol Hong, A K-Band High- Gain Down-Conversion Mixer in 0.18╬╝m CMOS Technology, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 227229, Apr 2009.
[30] B. R. Jackson and C. E. Saavedra, A CMOS Ku-Band 4x subharmonic mixer, IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 13511359, Jun. 2008.
[31] K. W. Hamed, A. P. Freundorfer, and Y. M. M. Antar, A monolithic double-balanced direct conversion mixer with an integrated wideband passive balun, IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 622629, Mar. 2005.